Nothing
test_that("g is produced if any solution is found", {
I = 108
J = 100
K = 10
df = array(rnorm(I*J*K), c(I,J,K))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
result = initializeACMTF(Z, 1, initialization="random")
expect_no_error(acmtfr_gradient(fac_to_vect(result), Z, Y))
})
test_that("the size of g is correct in the two-tensor case", {
I = 108
J = 100
K = 10
df = array(rnorm(I*J*K), c(I,J,K))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
result = initializeACMTF(Z, 1, initialization="random")
g = acmtfr_gradient(fac_to_vect(result), Z, Y)
expect_equal(length(g), I+J+K+J+K+2)
})
test_that("the size of g is correct in the tensor-matrix case", {
A = array(rnorm(108))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10))
df1 = reinflateTensor(A, B[,1], C)
df2 = reinflateMatrix(A, B[,2])
datasets = list(df1, df2)
Y = matrix(rnorm(108), nrow=108, ncol=1)
modes = list(c(1,2,3), c(1,4))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 1, initialization="random")
g = acmtfr_gradient(fac_to_vect(result), Z, Y)
expect_equal(length(g), 108+100+10+100+2)
})
test_that("an error is thrown for 4-way or more", {
I = 108
J = 100
K = 10
L = 5
df = array(rnorm(I*J*K*L), c(I,J,K,L))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3,4), c(1,5,6,7))
Z = setupCMTFdata(datasets, modes)
result = initializeCMTF(Z, 1, initialization="random")
expect_error(acmtfr_gradient(fac_to_vect(result), Z, Y))
})
test_that("g[[1]] is different for different values of pi", {
I = 108
J = 100
K = 10
df = array(rnorm(I*J*K), c(I,J,K))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
result = initializeACMTF(Z, 1, initialization="random")
Fac1 = vect_to_fac(acmtfr_gradient(fac_to_vect(result), Z, Y, pi=0.1), Z)
Fac2 = vect_to_fac(acmtfr_gradient(fac_to_vect(result), Z, Y, pi=0.9), Z)
expect_failure(expect_equal(Fac1[[1]], Fac2[[1]]))
})
test_that("g[[2]] is the same for different values of pi", {
I = 108
J = 100
K = 10
df = array(rnorm(I*J*K), c(I,J,K))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
result = initializeACMTF(Z, 1, initialization="random")
Fac1 = vect_to_fac(acmtfr_gradient(fac_to_vect(result), Z, Y, pi=0.1), Z)
Fac2 = vect_to_fac(acmtfr_gradient(fac_to_vect(result), Z, Y, pi=0.9), Z)
expect_equal(Fac1[[2]], Fac2[[2]])
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.