Nothing
test_that("the correct mode 1 size is returned", {
set.seed(123)
A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100, 2))
E = array(rnorm(10*2), c(10, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 1, initialization="random")
expect_equal(nrow(result[[1]]), 108)
})
test_that("max(modes)+1 number of initialized components are returned", {
set.seed(123)
A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100, 2))
E = array(rnorm(10*2), c(10, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 1, initialization="random")
expect_equal(length(result), 6)
})
test_that("the correct mode 1 components are found using nvecs", {
set.seed(123)
A = rnorm(108)
B = rnorm(100)
C = rnorm(10)
D = rnorm(100)
E = rnorm(10)
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 1, initialization="nvec")
expect_equal(abs(cor(result[[1]], A))[1,1], 1, tolerance=0.01)
})
test_that("the correct mode 2 components are found using nvecs", {
set.seed(123)
A = rnorm(108)
B = rnorm(100)
C = rnorm(10)
D = rnorm(100)
E = rnorm(10)
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 1, initialization="nvec")
expect_equal(abs(cor(result[[2]], B))[1,1], 1, tolerance=0.01)
})
test_that("the correct mode 3 components are found using nvecs", {
set.seed(123)
A = rnorm(108)
B = rnorm(100)
C = rnorm(10)
D = rnorm(100)
E = rnorm(10)
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 1, initialization="nvec")
expect_equal(abs(cor(result[[3]], C))[1,1], 1, tolerance=0.01)
})
test_that("the correct number of lambda values are produced", {
set.seed(123)
A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100, 2))
E = array(rnorm(10*2), c(10, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 2, initialization="random")
expect_equal(result[[6]], array(1, c(2,2)))
})
test_that("initialized values are norm 1", {
set.seed(123)
A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100, 2))
E = array(rnorm(10*2), c(10, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
result = initializeACMTF(Z, 2, initialization="random")
expect_equal(norm(as.matrix(result[[1]][,1]), "F"), 1)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.