CNVassoc-internal: Internal CNVassoc functions

Description Usage Details

Description

Internal CNVassoc functions

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
assocCNV.i(x, formula, num.copies, cnv.tol, ...)
EMlogistic(y, X, w, beta, tol = 10^-6, max.iter = 1000, verbose = FALSE)
EMnorm(y, X, w, beta, sigma, variant, tol = 10^-6, max.iter = 1000, verbose = FALSE)
EMpoisson(y, X, w, beta, tol = 10^-6, max.iter = 1000, verbose = FALSE)
EMWeibull(y, cens, X, w, beta, alpha, tol = 10^-6, max.iter = 1000, verbose = FALSE)
hessianLinear(beta, sigma, y, w, X, variant)
hessianLogistic(beta, y, w, X, variant)
hessianPoisson(beta, y, w, X, variant)
hessianWeibull(beta, alpha, y, cens, w, X, variant)
ifelsem(test, yes, no)
linear.fit(x, y, weights, tol = 1e-08, max.iter = 25, verbose = FALSE)
logistic.fit(x, y, weights, tol = 1e-08, max.iter = 25, verbose = FALSE)
matrix2vector(betam, variant)
mix(mixdat, method, num.class, mean.ini, sigma.ini, pi.ini, var.equal)
mixture(intensities, num.class, mix.method, threshold.0, threshold.k, mu.ini,
        sigma.ini, pi.ini, var.equal)
NRlogistic(y, X, w, beta, variant, tol, max.iter, verbose)
NRnorm(y, X, w, beta, sigma, variant, tol = 10^-6, max.iter = 1000, verbose = FALSE)
plot.cnv.intensities(x, my.colors = c("black", "red", "blue"), ylab = "Peak Intensity", 
        xlab = c("individuals", "Phenotype"), case.control, cex.leg = 0.8, 
        dens.bw = "nrd0", dens.adjust = 1, ...)
plot.cnv.probabilities(x, my.colors = c("black", "red", "blue"), case.control, 
         ylab = "CNV probability", xlab, ...)
vector2matrix(betav, variant, J)
is.quantitative(formula, data)
getProbsRegions.i(i, blocks, probs, annotation, nclass)
plapply(X, FUN, ...)
translate(obj)

Details

These are not to be called by the user


CNVassoc documentation built on May 30, 2017, 12:50 a.m.