Nothing
#' Compute Conditional Probability of Each Observed Outcome Given Each True Outcome for a given MCMC Chain, for Every Subject
#'
#' @param chain_colMeans A numeric vector containing the posterior means for all
#' sampled parameters in a given MCMC chain. \code{chain_colMeans} must be a named
#' object (i.e. each parameter must be named as \code{delta[l,k,j,p]}).
#' @param V A numeric design matrix.
#' @param n An integer value specifying the number of observations in the sample.
#' This value should be equal to the number of rows of the design matrix, \code{V}.
#' @param n_cat The number of categorical values that the true outcome, \eqn{Y},
#' the first-stage observed outcome, \eqn{Y^*}, and the second-stage
#' observed outcome, \eqn{\tilde{Y}},\ can take.
#'
#' @return \code{pitilde_compute_for_chains} returns a matrix of conditional probabilities,
#' \eqn{P(\tilde{Y}_i = \ell | Y^*_i = k, Y_i = j, V_i) = \frac{\text{exp}\{\delta_{\ell kj0} + \delta_{\ell kjV} V_i\}}{1 + \text{exp}\{\delta_{\ell kj0} + \delta_{\ell kjV} V_i\}}}
#' corresponding to each subject and observed outcome. Specifically, the probability
#' for subject \eqn{i} and second-stage observed category $1$ occurs at row \eqn{i}. The probability
#' for subject \eqn{i} and second-stage observed category $2$ occurs at row \eqn{i +} \code{n}.
#' Columns of the matrix correspond to the first-stage outcome categories \eqn{j = 1, \dots,} \code{n_cat}.
#' The third dimension of the array corresponds to the true outcome categories,
#' \eqn{j = 1, \dots,} \code{n_cat}.
#'
#' @include sum_every_n.R
#'
#' @importFrom stats rnorm
#'
pitilde_compute_for_chains <- function(chain_colMeans, V, n, n_cat){
dim_v = ncol(V)
delta_names <- paste0("gamma2[1,",
rep(1:n_cat, dim_v*dim_v), ",",
rep(rep(1:n_cat, each = dim_v), dim_v), ",",
rep(1:dim_v, each = n_cat * n_cat), "]")
delta_j1_names <- which(substring(delta_names, 12, 12) == 1)
delta_j2_names <- which(substring(delta_names, 12, 12) == 2)
delta_j1 <- matrix(chain_colMeans[delta_names[delta_j1_names]],
ncol = 2, byrow = TRUE)
delta_j2 <- matrix(chain_colMeans[delta_names[delta_j2_names]],
ncol = 2, byrow = TRUE)
delta <- array(c(delta_j1, delta_j2), dim = c(dim_v, n_cat, n_cat))
exp_vd1 = exp(V %*% delta[,,1])
exp_vd2 = exp(V %*% delta[,,2])
pi_denominator1 = apply(exp_vd1, FUN = sum_every_n1, n, MARGIN = 2)
pi_result1 = exp_vd1 / rbind(pi_denominator1)
pi_denominator2 = apply(exp_vd2, FUN = sum_every_n1, n, MARGIN = 2)
pi_result2 = exp_vd2 / rbind(pi_denominator2)
pitilde_matrix1 = rbind(pi_result1,
1 - apply(pi_result1,
FUN = sum_every_n, n = n,
MARGIN = 2))
pitilde_matrix2 = rbind(pi_result2,
1 - apply(pi_result2,
FUN = sum_every_n, n = n,
MARGIN = 2))
pitilde_array = array(c(pitilde_matrix1, pitilde_matrix2),
dim = c(dim(pitilde_matrix1), 2))
return(pitilde_array)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.