Nothing
#' This function creates an object that summarizes the Heidelberg-Welch
#' convergence diagnostic.
#'
#' @param res An object of class \code{COMIX} or \code{tidyChainCOMIX}.
#' @param params A character vector naming the parameters to compute the
#' Heidelberg-Welch diagnostic for.
#' @param eps Target value for ratio of halfwidth to sample mean.
#' @param pvalue Significance level to use.
#' @return An \code{heidelParamsCOMIX} object which is a named list,
#' with a named element for each requested parameter. Each element is a data
#' frame that includes the Heidelberg-Welch diagnostic and results of a
#' stationarity test for the parameter.
#' @examples
#' library(COMIX)
#' # Number of observations for each sample (row) and cluster (column):
#' njk <-
#' matrix(
#' c(
#' 150, 300,
#' 250, 200
#' ),
#' nrow = 2,
#' byrow = TRUE
#' )
#'
#' # Dimension of data:
#' p <- 3
#'
#' # Scale and skew parameters for first cluster:
#' Sigma1 <- matrix(0.5, nrow = p, ncol = p) + diag(0.5, nrow = p)
#' alpha1 <- rep(0, p)
#' alpha1[1] <- -5
#' # location parameter for first cluster in first sample:
#' xi11 <- rep(0, p)
#' # location parameter for first cluster in second sample (aligned with first):
#' xi21 <- rep(0, p)
#'
#' # Scale and skew parameters for second cluster:
#' Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)
#' alpha2 <- rep(0, p)
#' alpha2[2] <- 5
#' # location parameter for second cluster in first sample:
#' xi12 <- rep(3, p)
#' # location parameter for second cluster in second sample (misaligned with first):
#' xi22 <- rep(4, p)
#'
#' # Sample data:
#' set.seed(1)
#' Y <-
#' rbind(
#' sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigma1, alpha = alpha1),
#' sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
#' sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigma1, alpha = alpha1),
#' sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
#' )
#'
#' C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2]))
#'
#' prior <- list(zeta = 1, K = 10)
#' pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage
#' pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
#' # Fit the model:
#' res <- comix(Y, C, pmc = pmc, prior = prior)
#'
#' # Relabel to resolve potential label switching issues:
#' res_relab <- relabelChain(res)
#' effssz <- effectiveSampleSize(res_relab, "w")
#' # Or:
#' tidy_chain <- tidyChain(res_relab, "w")
#' hd <- heidelParams(tidy_chain, "w")
#' # (see vignette for a more detailed example)
#' @export
heidelParams <- function(res, params = c("w", "xi", "xi0", "psi", "G", "E", "eta"),
eps = 0.1, pvalue = 0.05) {
stopifnot(is(res, "COMIX") | is(res, "tidyChainCOMIX"))
if (is(res, "COMIX")) {
tidy_chain <- tidyChain(res, params)
} else {
tidy_chain <- res
}
n <- attributes(tidy_chain)$n
P <- attributes(tidy_chain)$p
nsave <- attributes(tidy_chain)$nsave
K <- attributes(tidy_chain)$K
J <- attributes(tidy_chain)$J
non_trivial_k <- attributes(tidy_chain)$non_trivial_k
non_triv_j_k <- attributes(tidy_chain)$non_triv_j_k
glob_freq_t <- attributes(tidy_chain)$glob_freq_t
local_freq_t <- attributes(tidy_chain)$local_freq_t
heidelParams <- list()
class(heidelParams) <- "heidelParamsCOMIX"
attributes(heidelParams)$n <- n
attributes(heidelParams)$p <- P
attributes(heidelParams)$nsave <- nsave
attributes(heidelParams)$K <- K
attributes(heidelParams)$J <- J
attributes(heidelParams)$non_trivial_k <- non_trivial_k
attributes(heidelParams)$non_triv_j_k <- non_triv_j_k
attributes(heidelParams)$eps <- eps
attributes(heidelParams)$pvalue <- pvalue
attributes(heidelParams)$glob_freq_t <- glob_freq_t
# w -----
if ("w" %in% params) {
tc <- tidy_chain$w
tc$triv <- TRUE
for (j in 1:J) {
tc$triv[tc$j == j & tc$k %in% non_triv_j_k[[as.character(j)]]] <- FALSE
}
tc <- tc %>% filter(!.data$triv) %>% select(-.data$triv)
a <-
tc %>%
pivot_wider(names_from = c(.data$k, .data$j), values_from = c(.data$W)) %>%
select(-.data$iter)
aa <- mcmc(data = a, start = 1)
hd <- heidel.diag(x = aa, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
kj <- apply(str_split(rownames(hd), "_", simplify = TRUE), 2, as.character)
dkj <- tc %>% select(.data$k, .data$j) %>% distinct()
stopifnot(all.equal(dkj %>% as.matrix() %>% unname(), kj))
heidelParams$w <-
tibble(dkj, as_tibble(hd)) %>%
mutate(kj = rownames(hd)) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
)
dplyr.summarise.inform <- options()$dplyr.summarise.inform
options(dplyr.summarise.inform = FALSE)
attributes(heidelParams$w)$meanW <-
tidy_chain$w %>%
group_by(.data$j, .data$k) %>%
summarize(meanW = mean(.data$W))
options(dplyr.summarise.inform = dplyr.summarise.inform)
}
# xi0 -----
if ("xi0" %in% params) {
tc <- tidy_chain$xi0 %>% filter(.data$k %in% non_trivial_k)
a <-
tc %>%
pivot_wider(names_from = c(.data$k, .data$p), values_from = c(.data$xi0)) %>%
select(-.data$iter)
aa <- mcmc(data = a, start = 1)
hd <- heidel.diag(x = aa, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
kp <- apply(str_split(rownames(hd), "_", simplify = TRUE), 2, as.character)
dkp <- tc %>% select(.data$k, .data$p) %>% distinct()
stopifnot(all.equal(dkp %>% as.matrix() %>% unname(), kp))
heidelParams$xi0 <-
tibble(dkp, as_tibble(hd)) %>%
mutate(kp = rownames(hd)) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
) %>%
left_join(glob_freq_t %>% select(.data$k, .data$frq_t), by = "k")
dplyr.summarise.inform <- options()$dplyr.summarise.inform
options(dplyr.summarise.inform = FALSE)
attributes(heidelParams$xi0)$meanXi0 <-
tidy_chain$xi0 %>%
group_by(.data$k, .data$p) %>%
summarize(meanXi0 = mean(.data$xi0))
options(dplyr.summarise.inform = dplyr.summarise.inform)
}
# xi -----
if ("xi" %in% params) {
tc <- tidy_chain$xi
tc$triv <- TRUE
for (j in 1:J) {
tc$triv[tc$j == j & tc$k %in% non_triv_j_k[[as.character(j)]]] <- FALSE
}
tc <- tc %>% filter(!.data$triv) %>% select(-.data$triv)
a <-
tc %>%
pivot_wider(names_from = c(.data$k, .data$p, .data$j), values_from = c(.data$xi)) %>%
select(-.data$iter)
aa <- mcmc(data = a, start = 1)
hd <- heidel.diag(x = aa, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
kpj <- apply(str_split(rownames(hd), "_", simplify = TRUE), 2, as.character)
dkpj <- tc %>% select(.data$k, .data$p, .data$j) %>% distinct()
stopifnot(all.equal(dkpj %>% as.matrix() %>% unname(), kpj))
local_freq_t <-
local_freq_t %>%
ungroup() %>%
mutate(j = factor(.data$j), k = factor(.data$k), .data$frq_t) %>%
select(.data$j, .data$k, .data$frq_t)
heidelParams$xi <-
tibble(dkpj, as_tibble(hd)) %>%
mutate(kpj = rownames(hd)) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
) %>%
left_join(local_freq_t, by = c("j", "k"))
dplyr.summarise.inform <- options()$dplyr.summarise.inform
options(dplyr.summarise.inform = FALSE)
attributes(heidelParams$xi)$meanXi <-
tidy_chain$xi %>%
group_by(.data$k, .data$j, .data$p) %>%
summarize(meanXi = mean(.data$xi))
options(dplyr.summarise.inform = dplyr.summarise.inform)
}
# psi -----
if ("psi" %in% params) {
tc <- tidy_chain$psi %>% filter(.data$k %in% non_trivial_k)
a <-
tc %>%
pivot_wider(names_from = c(.data$k, .data$p), values_from = c(.data$psi)) %>%
select(-.data$iter)
aa <- mcmc(data = a, start = 1)
hd <- heidel.diag(x = aa, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
kp <- apply(str_split(rownames(hd), "_", simplify = TRUE), 2, as.character)
dkp <- tc %>% select(.data$k, .data$p) %>% distinct()
stopifnot(all.equal(dkp %>% as.matrix() %>% unname(), kp))
heidelParams$psi <-
tibble(dkp, as_tibble(hd)) %>%
mutate(kp = rownames(hd)) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
) %>%
left_join(glob_freq_t %>% select(.data$k, .data$frq_t), by = "k")
dplyr.summarise.inform <- options()$dplyr.summarise.inform
options(dplyr.summarise.inform = FALSE)
attributes(heidelParams$psi)$meanPsi <-
tidy_chain$psi %>%
group_by(.data$k, .data$p) %>%
summarize(meanPsi = mean(.data$psi))
options(dplyr.summarise.inform = dplyr.summarise.inform)
}
# G -----
if ("G" %in% params) {
tc <- tidy_chain$G %>% filter(.data$k %in% non_trivial_k)
a <-
tc %>%
pivot_wider(names_from = c(.data$k, .data$p1, .data$p2), values_from = c(.data$G)) %>%
select(-.data$iter)
aa <- mcmc(data = a, start = 1)
hd <- heidel.diag(x = aa, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
kp1p2 <- apply(str_split(rownames(hd), "_", simplify = TRUE), 2, as.character)
dkp1p2 <- tc %>% select(.data$k, .data$p1, .data$p2) %>% distinct()
stopifnot(all.equal(dkp1p2 %>% as.matrix() %>% unname(), kp1p2))
heidelParams$G <-
tibble(dkp1p2, as_tibble(hd)) %>%
mutate(p1p2 = rownames(hd)) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
) %>%
left_join(glob_freq_t %>% select(.data$k, .data$frq_t), by = "k")
dplyr.summarise.inform <- options()$dplyr.summarise.inform
options(dplyr.summarise.inform = FALSE)
attributes(heidelParams$G)$meanG <-
tidy_chain$G %>%
group_by(.data$k, .data$p1, .data$p2) %>%
summarize(meanG = mean(.data$G))
options(dplyr.summarise.inform = dplyr.summarise.inform)
}
# E -----
if ("E" %in% params) {
tc <- tidy_chain$E %>% filter(.data$k %in% non_trivial_k)
a <-
tc %>%
pivot_wider(names_from = c(.data$k, .data$p1, .data$p2), values_from = c(.data$E)) %>%
select(-.data$iter)
aa <- mcmc(data = a, start = 1)
hd <- heidel.diag(x = aa, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
kp1p2 <- apply(str_split(rownames(hd), "_", simplify = TRUE), 2, as.character)
dkp1p2 <- tc %>% select(.data$k, .data$p1, .data$p2) %>% distinct()
stopifnot(all.equal(dkp1p2 %>% as.matrix() %>% unname(), kp1p2))
heidelParams$E <-
tibble(dkp1p2, as_tibble(hd)) %>%
mutate(p1p2 = rownames(hd)) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
) %>%
left_join(glob_freq_t %>% select(.data$k, .data$frq_t), by = "k")
dplyr.summarise.inform <- options()$dplyr.summarise.inform
options(dplyr.summarise.inform = FALSE)
attributes(heidelParams$E)$meanE <-
tidy_chain$E %>%
group_by(.data$k, .data$p1, .data$p2) %>%
summarize(meanE = mean(.data$E))
options(dplyr.summarise.inform = dplyr.summarise.inform)
}
# eta -----
if ("eta" %in% params) {
eta <- mcmc(data = tidy_chain$eta$eta, start = 1)
hd <- heidel.diag(x = eta, eps = eps, pvalue = pvalue)
class(hd) <- "matrix"
heidelParams$eta <-
as_tibble(hd) %>%
mutate(
stest = factor(.data$stest, levels = c(1, 0), labels = c("passed", "failed")),
htest = factor(.data$htest, levels = c(1, 0), labels = c("passed", "failed"))
)
}
return(heidelParams)
}
#' This function creates plots for the Heidelberg-Welch diagnostic and
#' results of test of stationarity for the parameters of the model.
#'
#' @param hd An object of class \code{heidelParamsCOMIX} as created
#' by the function \code{heidelParams}.
#' @param param Character, naming the parameter to create a plot of the
#' Heidelberg-Welch diagnostic for.
#' @return A \code{ggplot2} plot containing the Heidelberg-Welch diagnostic plot.
#' @examples
#' library(COMIX)
#' # Number of observations for each sample (row) and cluster (column):
#' njk <-
#' matrix(
#' c(
#' 150, 300,
#' 250, 200
#' ),
#' nrow = 2,
#' byrow = TRUE
#' )
#'
#' # Dimension of data:
#' p <- 3
#'
#' # Scale and skew parameters for first cluster:
#' Sigma1 <- matrix(0.5, nrow = p, ncol = p) + diag(0.5, nrow = p)
#' alpha1 <- rep(0, p)
#' alpha1[1] <- -5
#' # location parameter for first cluster in first sample:
#' xi11 <- rep(0, p)
#' # location parameter for first cluster in second sample (aligned with first):
#' xi21 <- rep(0, p)
#'
#' # Scale and skew parameters for second cluster:
#' Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)
#' alpha2 <- rep(0, p)
#' alpha2[2] <- 5
#' # location parameter for second cluster in first sample:
#' xi12 <- rep(3, p)
#' # location parameter for second cluster in second sample (misaligned with first):
#' xi22 <- rep(4, p)
#'
#' # Sample data:
#' set.seed(1)
#' Y <-
#' rbind(
#' sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigma1, alpha = alpha1),
#' sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
#' sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigma1, alpha = alpha1),
#' sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
#' )
#'
#' C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2]))
#'
#' prior <- list(zeta = 1, K = 10)
#' pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage
#' pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
#' # Fit the model:
#' res <- comix(Y, C, pmc = pmc, prior = prior)
#'
#' # Relabel to resolve potential label switching issues:
#' res_relab <- relabelChain(res)
#' effssz <- effectiveSampleSize(res_relab, "w")
#' # Or:
#' tidy_chain <- tidyChain(res_relab, "w")
#' hd <- heidelParams(tidy_chain, "w")
#' plotHeidelParams(hd, "w")
#' # (see vignette for a more detailed example)
#' @export
plotHeidelParams <- function(hd, param) {
stopifnot(is(hd, "heidelParamsCOMIX"))
stopifnot(length(param) == 1)
stopifnot(param %in% c("w", "xi0", "xi", "psi", "G", "E"))
J <- attributes(hd)$J
j_names <- paste0("Sample ", 1:J)
names(j_names) <- 1:J
non_trivial_k <- attributes(hd)$non_trivial_k
glob_freq_t <- attributes(hd)$glob_freq_t
frq_t <- glob_freq_t$frq_t[glob_freq_t$k %in% non_trivial_k]
k_names_frq <- paste0("Cluster ", non_trivial_k, "\n(Est. Freq. = ", round(frq_t, 2), ")")
names(k_names_frq) <- non_trivial_k
scm <-
scale_color_manual(
name = "Heidelberg-Welch\nStationarity test",
labels = c("Passed", "Failed"),
values = c("passed" = "#00ba38", "failed" = "#f8766d")
)
# w -----
if (param == "w") {
g <-
hd$w %>%
left_join(attributes(hd$w)$meanW, by = c("k", "j")) %>%
mutate(mean_na_replace = ifelse(!is.na(.data$mean), .data$mean, .data$meanW)) %>%
mutate(start_na_replace = ifelse(!is.na(.data$start), as.character(.data$start), "")) %>%
ggplot(aes(x = .data$k, y = .data$mean_na_replace, color = .data$stest, label = .data$start_na_replace)) +
geom_point() +
geom_segment(aes(xend = .data$k, y = 0, yend = .data$mean_na_replace)) +
geom_text(
aes(y = .data$meanW + 0.13 * (max(.data$meanW) - min(.data$meanW)) * sign(.data$meanW)),
size = 2.5,
color = "black"
) +
scm +
ylab("Estimated weight\n(start chain from)") +
xlab("Cluster Number") +
facet_wrap(~ .data$j, labeller = labeller(j = j_names))
return(g)
}
# xi0 -----
if (param == "xi0") {
g <-
hd$xi0 %>%
left_join(attributes(hd$xi0)$meanXi0, by = c("k", "p")) %>%
mutate(mean_na_replace = ifelse(!is.na(.data$mean), .data$mean, .data$meanXi0)) %>%
mutate(start_na_replace = ifelse(!is.na(.data$start), as.character(.data$start), "")) %>%
ggplot(aes(x = .data$p, y = .data$mean_na_replace, color = .data$stest, label = .data$start_na_replace)) +
geom_segment(aes(xend = .data$p, y = 0, yend = .data$mean_na_replace)) +
geom_point() +
geom_text(
aes(y = .data$meanXi0 + 0.13 * (max(.data$meanXi0) - min(.data$meanXi0)) * sign(.data$meanXi0)),
size = 2.5,
color = "black"
) +
scm +
ylab("Estimated grand location\n(start chain from)") +
xlab("Margin") +
facet_wrap(~ .data$k, labeller = labeller(k = k_names_frq))
return(g)
}
# xi -----
if (param == "xi") {
g <-
hd$xi %>%
left_join(attributes(hd$xi)$meanXi, by = c("k", "j", "p")) %>%
mutate(mean_na_replace = ifelse(!is.na(.data$mean), .data$mean, .data$meanXi)) %>%
mutate(start_na_replace = ifelse(!is.na(.data$start), as.character(.data$start), "")) %>%
ggplot(aes(x = .data$p, y = .data$mean_na_replace, color = .data$stest, label = .data$start_na_replace)) +
geom_segment(aes(xend = .data$p, y = 0, yend = .data$mean_na_replace)) +
geom_point() +
geom_text(
aes(y = .data$meanXi + 0.13 * (max(.data$meanXi) - min(.data$meanXi)) * sign(.data$meanXi)),
size = 2.5,
color = "black"
) +
scm +
ylab("Estimated cluster-specific location\n(start chain from)") +
xlab("Margin") +
facet_grid(.data$j ~ .data$k, labeller = labeller(j = j_names, k = k_names_frq))
return(g)
}
# psi -----
if (param == "psi") {
g <-
hd$psi %>%
left_join(attributes(hd$psi)$meanPsi, by = c("k", "p")) %>%
mutate(mean_na_replace = ifelse(!is.na(.data$mean), .data$mean, .data$meanPsi)) %>%
mutate(start_na_replace = ifelse(!is.na(.data$start), as.character(.data$start), "")) %>%
ggplot(aes(x = .data$p, y = .data$mean_na_replace, color = .data$stest, label = .data$start_na_replace)) +
geom_segment(aes(xend = .data$p, y = 0, yend = .data$mean_na_replace)) +
geom_point() +
geom_text(
aes(y = .data$meanPsi + 0.13 * (max(.data$meanPsi) - min(.data$meanPsi)) * sign(.data$meanPsi)),
size = 2.5,
color = "black"
) +
scm +
ylab("Estimated \U03C8\n(start chain from)") +
xlab("Margin") +
facet_wrap(~ .data$k, labeller = labeller(k = k_names_frq))
return(g)
}
# G -----
if (param == "G") {
g <-
hd$G %>%
mutate(
Diagonal =
factor(
.data$p1 == .data$p2,
levels = c(TRUE, FALSE),
labels = c("Diagonal", "Off-Diagonal")
)
) %>%
mutate(p1p2 = paste0(.data$p1, ", ", .data$p2)) %>%
left_join(attributes(hd$G)$meanG, by = c("k", "p1", "p2")) %>%
mutate(mean_na_replace = ifelse(!is.na(.data$mean), .data$mean, .data$meanG)) %>%
mutate(start_na_replace = ifelse(!is.na(.data$start), as.character(.data$start), "")) %>%
ggplot(aes(x = .data$p1p2, y = .data$mean_na_replace, color = .data$stest, label = .data$start_na_replace)) +
geom_segment(aes(xend = .data$p1p2, y = 0, yend = .data$mean_na_replace)) +
geom_point(aes(shape = .data$Diagonal)) +
geom_text(
aes(y = .data$meanG + 0.13 * (max(.data$meanG) - min(.data$meanG)) * sign(.data$meanG)),
size = 2.5,
color = "black"
) +
scm +
ylab("Estimated G\n(start chain from)") +
xlab("Margin") +
facet_wrap(~ .data$k, labeller = labeller(k = k_names_frq)) +
theme(axis.text.x = element_text(angle = -90, vjust = .5, hjust = 1))
return(g)
}
# E -----
if (param == "E") {
g <-
hd$E %>%
mutate(
Diagonal =
factor(
.data$p1 == .data$p2,
levels = c(TRUE, FALSE),
labels = c("Diagonal", "Off-Diagonal")
)
) %>%
mutate(p1p2 = paste0(.data$p1, ", ", .data$p2)) %>%
left_join(attributes(hd$E)$meanE, by = c("k", "p1", "p2")) %>%
mutate(mean_na_replace = ifelse(!is.na(.data$mean), .data$mean, .data$meanE)) %>%
mutate(start_na_replace = ifelse(!is.na(.data$start), as.character(.data$start), "")) %>%
ggplot(aes(x = .data$p1p2, y = .data$mean_na_replace, color = .data$stest, label = .data$start_na_replace)) +
geom_segment(aes(xend = .data$p1p2, y = 0, yend = .data$mean_na_replace)) +
geom_point(aes(shape = .data$Diagonal)) +
geom_text(
aes(y = .data$meanE + 0.13 * (max(.data$meanE) - min(.data$meanE)) * sign(.data$meanE)),
size = 2.5,
color = "black"
) +
scm +
ylab("Estimated G\n(start chain from)") +
xlab("Margin") +
facet_wrap(~ .data$k, labeller = labeller(k = k_names_frq)) +
theme(axis.text.x = element_text(angle = -90, vjust = .5, hjust = 1))
return(g)
}
return(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.