Nothing
#' Executes an NLME stepwise covariate search
#'
#' Executes an NLME stepwise covariate search
#'
#' @inheritParams fitmodel
#' @param hostPlatform Host definition for model execution. See \code{\link{hostParams}}.
#' If \code{missing}, multicore local host with 4 threads is used.
#' @param covariateModel Covariate Effects Model providing the relationship
#' between covariates and structural parameters to test (\code{covariateModel(model)}).
#' @param stepwiseParams Stepwise parameters defining decision tree.
#' See \code{\link{StepwiseParams}}
#'
#' @return if \code{runInBackground = FALSE}, a data frame is returned with
#' stepwise search results, i.e. "Overall" comma separated file.
#' Otherwise the \code{StepwiseNlmeJob} class object is returned.
#'
#' @seealso \code{\link{hostParams}, \link{engineParams}}
#'
#' @examples
#' \donttest{
#' # Define the model
#' model <- pkmodel(numCompartments = 2,
#' data = pkData,
#' ID = "Subject",
#' Time = "Act_Time",
#' A1 = "Amount",
#' CObs = "Conc")
#'
#' # Add Gender covariate of type categorical
#' model <- addCovariate(model,
#' covariate = "Gender",
#' type = "Categorical",
#' effect = c("V2", "Cl2"),
#' levels = c(0, 1),
#' labels = c("Female", "Male"))
#'
#' # Add Bodyweight covariate of type continuous
#' model <- addCovariate(model,
#' covariate = "BodyWeight",
#' type = "Continuous",
#' direction = "Backward",
#' center = "Mean",
#' effect = c("V", "Cl"))
#'
#' # Define the host
#' defaultHost <- hostParams(parallelMethod = "None",
#' hostName = "local",
#' numCores = 1)
#'
#' # Define the engine parameters
#' params <- engineParams(model)
#'
#' # Define covariate model
#' cp <- covariateModel(model)
#'
#' # Define the stepwise parameters
#' sp <- StepwiseParams(0.01, 0.001, "-2LL")
#'
#' # Perform stepwise search
#' OverallDF <- stepwiseSearch(model = model,
#' hostPlatform = defaultHost,
#' params = params,
#' covariateModel = cp,
#' stepwiseParams = sp,
#' runInBackground = FALSE)
#' }
#'
#' @export
#'
stepwiseSearch <- function(model,
hostPlatform = NULL,
params,
covariateModel,
stepwiseParams,
runInBackground = FALSE,
...) {
if (missing(model)) {
stop("model argument is required for run.")
} else {
stopifnot(inherits(model, "NlmePmlModel"))
}
ellipsisArgs <- list(...)
hostPlatform <-
.load_hostPlatform(hostPlatform,
ellipsisArgs,
model = model,
mode = "multicore")
params <- .load_engineParams(model, params, ellipsisArgs)
if (missing(stepwiseParams)) {
stepwiseParams <- Certara.RsNLME::StepwiseParams(addPValue = 0.01,
removePValue = 0.001,
method = "-2LL")
message(
"\nstepwiseParams argument is not given. ",
"\nUsing Default: ",
"\nThresholds for adding/removing a covariate effect: ",
paste(
stepwiseParams@addPValue,
stepwiseParams@removePValue,
sep = " / "
),
"\nMethod: ",
stepwiseParams@method
)
} else {
stopifnot(inherits(stepwiseParams, "StepwiseParams"))
}
if (missing(covariateModel)) {
message("\ncovariateModel argument is not given. Processing model object to make it.")
covariateModel <- Certara.RsNLME::covariateModel(model = model)
} else {
stopifnot(inherits(covariateModel, "CovariateEffectModel"))
}
dataset <- model@dataset
model@modelInfo@workingDir <-
.prepare_wd(model@modelInfo@workingDir)
cwd <- model@modelInfo@workingDir
writeDefaultFiles(model = model,
dataset = dataset)
workFlow <- "WorkFlow"
if (hostPlatform@hostType == "Windows" && runInBackground) {
warning("`runInBackground = TRUE` is not available on Windows. Setting argument to `FALSE`.")
runInBackground <- FALSE
} else {
stopifnot(is.logical(runInBackground))
}
argsFile <-
GenerateControlfile(
dataset = dataset,
params = params,
workFlow = workFlow,
workingDir = cwd
)
argsFileLines <- unlist(strsplit(argsFile, "\n"))
extraArgsFile <- get_extraArgsFile(argsFileLines)
filesToCopy <- argsFileLines[2]
StepwiseParamsString <-
paste0(stepwiseParams@method,
":",
covariateModel@degreesOfFreedom)
argList <- list(
method = hostPlatform@parallelMethod@method,
install_directory = hostPlatform@installationDirectory,
shared_directory = hostPlatform@sharedDirectory,
localWorkingDir = cwd,
modelFile = dataset@modelFile,
nlmeArgsFile = extraArgsFile,
listOfFilesToCopy = filesToCopy,
numCovariates = covariateModel@numCovariates,
CovariateNames = gsub(",", " ", covariateModel@covariateList, fixed = TRUE),
NCriteria = StepwiseParamsString,
addPValue = stepwiseParams@addPValue,
removePValue = stepwiseParams@removePValue,
NumProc = hostPlatform@numCores,
workflowName = workFlow
)
job <- StepwiseNlmeJob(
jobType = "Stepwise",
localDir = cwd,
remoteDir = cwd,
host = hostPlatform,
argsList = argList,
argsFile = names(argsFile),
workflow = workFlow,
runInBackground = runInBackground,
stepParam = stepwiseParams
)
.log_Execution(Model = model,
EngineParams = params,
RunMode = "Cov Stepwise",
Host = hostPlatform)
results <- executeJob(job)
if (runInBackground) {
.report_BackgroundJob(hostPlatform@isLocal,
LocalWorkingDir = cwd,
RemoteDir = hostPlatform@sharedDirectory)
results
} else {
OverallPath <- file.path(cwd, "Overall.csv")
if (file.exists(OverallPath)) {
OverallDF <- read.csv(OverallPath, check.names = FALSE)
StepwisePath <- file.path(cwd, "Stepwise.txt")
if (file.exists(StepwisePath)) {
StepwiseText <- readLines(StepwisePath)
ScenarioToUse <- grepl("Scenario to use =", StepwiseText)
if (any(ScenarioToUse)) {
ScenarioToUseTextSplit <-
strsplit(StepwiseText[ScenarioToUse], split = " ")[[1]]
cstepPos <- grep("cstep[0-9]+", ScenarioToUseTextSplit)
if (length(cstepPos) > 0) {
cstep <- ScenarioToUseTextSplit[cstepPos][1]
BestScenario <- grepl(cstep, OverallDF$Scenario)
if (any(BestScenario)) {
OverallDF$BestScenario <- BestScenario
}
}
}
}
OverallDF
} else {
warning("File with CovSearch results\n",
OverallPath,
"\n not found.")
results
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.