Nothing
test_that("basic functionality summarise large scale characteristics", {
skip_on_cran()
person <- dplyr::tibble(
person_id = c(1L, 2L),
gender_concept_id = c(8507L, 8532L),
year_of_birth = c(1990L, 1992L),
month_of_birth = c(1L, 1L),
day_of_birth = c(1L, 1L),
race_concept_id = 0L,
ethnicity_concept_id = 0L
)
observation_period <- dplyr::tibble(
observation_period_id = c(1L, 2L),
person_id = c(1L, 2L),
observation_period_start_date = as.Date(c("2011-10-07", "2000-01-01")),
observation_period_end_date = as.Date(c("2031-10-07", "2030-01-01")),
period_type_concept_id = 44814724L
)
cohort_interest <- dplyr::tibble(
cohort_definition_id = c(1L, 1L, 1L, 2L),
subject_id = c(1L, 1L, 2L, 2L),
cohort_start_date = as.Date(c(
"2012-10-10", "2015-01-01", "2013-10-10", "2015-01-01"
)),
cohort_end_date = as.Date(c(
"2012-10-10", "2015-01-01", "2013-10-10", "2015-01-01"
))
)
drug_exposure <- dplyr::tibble(
drug_exposure_id = 1:11L,
person_id = c(rep(1L, 8), rep(2L, 3)),
drug_concept_id = c(
rep(1125315L, 2), rep(1503328L, 5), 1516978L, 1125315L, 1503328L, 1516978L
),
drug_exposure_start_date = as.Date(c(
"2010-10-01", "2012-12-31", "2010-01-01", "2012-09-01", "2013-04-01",
"2014-10-31", "2015-05-01", "2015-10-01", "2012-01-01", "2012-10-01",
"2014-10-12"
)),
drug_exposure_end_date = as.Date(c(
"2010-12-01", "2013-05-12", "2011-01-01", "2012-10-01", "2013-05-01",
"2014-12-31", "2015-05-02", "2016-10-01", "2012-01-01", "2012-10-30",
"2015-01-10"
)),
drug_type_concept_id = 38000177L,
quantity = 1L
)
condition_occurrence <- dplyr::tibble(
condition_occurrence_id = 1:8L,
person_id = c(rep(1L, 4), rep(2L, 4)),
condition_concept_id = c(
317009L, 378253L, 378253L, 4266367L, 317009L, 317009L, 378253L, 4266367L
),
condition_start_date = as.Date(c(
"2012-10-01", "2012-01-01", "2014-01-01", "2010-01-01", "2015-02-01",
"2012-01-01", "2013-10-01", "2014-10-10"
)),
condition_end_date = as.Date(c(
"2013-01-01", "2012-04-01", "2014-10-12", "2015-01-01", "2015-03-01",
"2012-04-01", "2013-12-01", NA
)),
condition_type_concept_id = 32020L
)
cdm <- mockCohortCharacteristics(
person = person,
observation_period = observation_period,
cohort_interest = cohort_interest,
drug_exposure = drug_exposure,
condition_occurrence = condition_occurrence
) |>
copyCdm()
concept <- dplyr::tibble(
concept_id = c(1125315L, 1503328L, 1516978L, 317009L, 378253L, 4266367L),
domain_id = NA_character_,
vocabulary_id = NA_character_,
concept_class_id = NA_character_,
concept_code = NA_character_,
valid_start_date = as.Date("1900-01-01"),
valid_end_date = as.Date("2099-01-01")
) |>
dplyr::mutate(concept_name = paste0("concept: ", .data$concept_id))
cdm <- omopgenerics::insertTable(cdm = cdm, name = "concept", table = concept)
expect_no_error(
result <- cdm$cohort_interest |>
summariseLargeScaleCharacteristics(
eventInWindow = c("condition_occurrence", "drug_exposure"),
minimumFrequency = 0
)
)
result <- result |> omopgenerics::splitAdditional()
conceptId <- c(317009, 317009, 378253, 378253, 4266367, 4266367)
windowName <- rep(c("0 to 0", "-inf to -366"), 3)
cohortName <- rep(c("cohort_1"), 6)
count <- c(NA, 2, NA, 1, NA, 2)
den <- c(3, 3, 3, 3, 3, 3)
percentage <- as.character(round((100 * count / den), 2))
for (k in seq_along(conceptId)) {
r <- result |>
dplyr::filter(
.data$concept_id == .env$conceptId[k] &
.data$variable_level == .env$windowName[k] &
.data$group_level == .env$cohortName[k]
)
if (is.na(count[k])) {
expect_true(nrow(r) == 0)
} else {
expect_true(nrow(r) == 2)
expect_true(r$estimate_value[r$estimate_name == "count"] == count[k])
expect_true(r$estimate_value[r$estimate_name == "percentage"] == percentage[k])
}
}
expect_no_error(
result <- cdm$cohort_interest |>
summariseLargeScaleCharacteristics(
episodeInWindow = c("condition_occurrence", "drug_exposure"),
minimumFrequency = 0
)
)
result <- result |> omopgenerics::splitAdditional()
conceptId <- c(317009, 317009, 378253, 378253, 4266367, 4266367)
windowName <- rep(c("0 to 0", "-inf to -366"), 3)
cohortName <- rep(c("cohort_1"), 6)
count <- c(1, 2, 1, 1, 2, 2)
den <- c(3, 3, 3, 3, 3, 3)
percentage <- as.character(round(100 * count / den, 2))
for (k in seq_along(conceptId)) {
r <- result |>
dplyr::filter(
.data$concept_id == .env$conceptId[k] &
.data$variable_level == .env$windowName[k] &
.data$group_level == .env$cohortName[k]
)
if (is.na(count[k])) {
expect_true(nrow(r) == 0)
} else {
expect_true(nrow(r) == 2)
expect_true(r$estimate_value[r$estimate_name == "count"] == count[k])
expect_true(r$estimate_value[r$estimate_name == "percentage"] == percentage[k])
}
}
expect_no_error(
result <- cdm$cohort_interest |>
PatientProfiles::addDemographics(
ageGroup = list(c(0, 24), c(25, 150))
) |>
summariseLargeScaleCharacteristics(
strata = list("age_group", c("age_group", "sex")),
episodeInWindow = c("condition_occurrence", "drug_exposure"),
minimumFrequency = 0
)
)
expect_true(all(c("cohort_1", "cohort_2") %in% result$group_level))
expect_true(all(c("overall", "age_group", "age_group &&& sex") %in% result$strata_name))
expect_true(all(c(
"overall", "0 to 24", "25 to 150", "0 to 24 &&& Female",
"25 to 150 &&& Male", "0 to 24 &&& Male"
) %in% result$strata_level))
result <- result |>
dplyr::filter(strata_level == "0 to 24 &&& Female")
result <- result |> omopgenerics::splitAdditional()
conceptId <- c(317009, 317009, 378253, 378253, 4266367, 4266367)
windowName <- rep(c("0 to 0", "-inf to -366"), 3)
cohortName <- rep(c("cohort_1"), 6)
count <- c(NA, 1, 1, NA, NA, NA)
den <- c(1, 1, 1, 1, 1, 1)
percentage <- sprintf("%.2f", 100 * count / den)
for (k in seq_along(conceptId)) {
r <- result |>
dplyr::filter(
.data$concept_id == .env$conceptId[k] &
.data$variable_level == .env$windowName[k] &
.data$group_level == .env$cohortName[k]
)
if (is.na(count[k])) {
expect_true(nrow(r) == 0)
} else {
expect_true(nrow(r) == 2)
expect_true(r$estimate_value[r$estimate_name == "count"] == count[k])
expect_true(r$estimate_value[r$estimate_name == "percentage"] == percentage[k])
}
}
expect_true(inherits(result, "summarised_result"))
expect_no_error(
result <- cdm$cohort_interest |>
summariseLargeScaleCharacteristics(
episodeInWindow = c("condition_occurrence", "drug_exposure"),
minimumFrequency = 0, excludedCodes = 317009
)
)
expect_false(any(grepl("317009", result$additional_level)))
# check strata
# all missing values
cdm$cohort1 <- cdm$cohort1 |>
dplyr::mutate(my_strata = NA)
expect_warning(cdm$cohort1 |>
summariseLargeScaleCharacteristics(
eventInWindow = c("condition_occurrence", "drug_exposure"),
strata = list("my_strata"),
minimumFrequency = 0
))
# some missing
expect_warning(cdm$cohort1 |>
dplyr::mutate(my_strata_2 = dplyr::if_else(row_number() == 1,
"1", NA
)) |>
summariseLargeScaleCharacteristics(
eventInWindow = c("condition_occurrence", "drug_exposure"),
strata = list("my_strata_2"),
minimumFrequency = 0
))
# multiple variables
expect_warning(expect_warning(cdm$cohort1 |>
dplyr::mutate(
my_strata_1 = NA,
my_strata_2 = dplyr::if_else(row_number() == 1,
"1", NA
),
my_strata_3 = 1L
) |>
summariseLargeScaleCharacteristics(
eventInWindow = c("condition_occurrence", "drug_exposure"),
strata = list(
"my_strata_1",
"my_strata_2",
"my_strata_3"
),
minimumFrequency = 0
)))
# minimum frequencey
expect_message(result <- cdm$cohort_interest |>
summariseLargeScaleCharacteristics(
eventInWindow = c("condition_occurrence", "drug_exposure"),
minimumFrequency = 0.5
))
# empty event table
cdm$visit_occurrence <- cdm$visit_occurrence |>
dplyr::filter(visit_occurrence_id == 9999)
expect_no_error(cdm$cohort_interest |>
summariseLargeScaleCharacteristics(
episodeInWindow = c("visit_occurrence"),
minimumFrequency = 0
))
# empty cohort, empty event table
cdm$cohort2 <- cdm$cohort2 |>
dplyr::filter(cohort_definition_id == 9999)
expect_no_error(cdm$cohort2 |>
summariseLargeScaleCharacteristics(
episodeInWindow = c("visit_occurrence"),
minimumFrequency = 0
))
# empty cohort, empty event table, strata all missing
expect_no_error(cdm$cohort2 |>
dplyr::mutate(my_strata_1 = NA) |>
summariseLargeScaleCharacteristics(
episodeInWindow = c("visit_occurrence"),
minimumFrequency = 0
))
# create eunomia reference
dbName <- "GiBleed"
cdm <- omock::mockCdmFromDataset(datasetName = dbName, source = "local") |>
copyCdm()
cdm <- CDMConnector::generateConceptCohortSet(cdm = cdm,
conceptSet = list(avp = 4112343),
name = "my_cohort")
# include source table
expect_no_error(
result1 <- cdm$my_cohort |>
summariseLargeScaleCharacteristics(
window = list(c(-Inf, -1), c(1, Inf)),
eventInWindow = "condition_occurrence",
includeSource = FALSE
)
)
expect_true("concept_id" %in% colnames(tidy(result1)))
expect_no_error(
result2 <- cdm$my_cohort |>
summariseLargeScaleCharacteristics(
window = list(c(-Inf, -1), c(1, Inf)),
eventInWindow = "condition_occurrence",
includeSource = TRUE
)
)
result2 <- tidy(result2)
expect_true(all(c("concept_id", "source_concept_id", "source_concept_name") %in% colnames(result2)))
expect_true(
result2 |>
dplyr::filter(.data$concept_id != .data$source_concept_id) |>
dplyr::filter(.data$variable_name != .data$source_concept_name) |>
nrow() > 0
)
expect_identical(
result2$source_concept_name[result2$source_concept_id == "4166590"],
"UNKNOWN CONCEPT"
)
# atc 3rd
expect_no_error(
result1 <- cdm$my_cohort |>
PatientProfiles::addSex() |>
summariseLargeScaleCharacteristics(
strata = list("sex"), window = list(c(-Inf, -1), c(1, Inf)),
eventInWindow = "condition_occurrence",
episodeInWindow = c("ATC 3rd", "drug_exposure"),
includeSource = FALSE
)
)
result1 <- tidy(result1)
expect_true("concept_id" %in% colnames(result1))
expect_false("source_concept_id" %in% colnames(result1))
expect_false("source_concept_name" %in% colnames(result1))
expect_no_error(
result2 <- cdm$my_cohort |>
PatientProfiles::addSex() |>
summariseLargeScaleCharacteristics(
strata = list("sex"), window = list(c(-Inf, -1), c(1, Inf)),
eventInWindow = "condition_occurrence",
episodeInWindow = c("ATC 3rd", "drug_exposure"),
includeSource = TRUE
)
)
result2 <- tidy(result2)
expect_true("concept_id" %in% colnames(result2))
expect_true("source_concept_id" %in% colnames(result2))
expect_true("source_concept_name" %in% colnames(result2))
dropCreatedTables(cdm = cdm)
skip("github tests break if we load the covid db")
# explore atc
dbName <- "synthea-covid19-10k"
cdm <- omock::mockCdmFromDataset(datasetName = dbName, source = "local") |>
copyCdm()
cdm <- CDMConnector::generateConceptCohortSet(
cdm = cdm, conceptSet = list(cva = 381316), name = "my_cohort"
)
# atc 3rd
expect_no_error(
result1 <- cdm$my_cohort |>
PatientProfiles::addSex() |>
summariseLargeScaleCharacteristics(
strata = list("sex"), window = list(c(-Inf, -1), c(1, Inf)),
eventInWindow = "condition_occurrence",
episodeInWindow = c("ATC 3rd", "drug_exposure"),
includeSource = FALSE
)
)
result1 <- tidy(result1)
expect_true("concept_id" %in% colnames(result1))
expect_false("source_concept_id" %in% colnames(result1))
expect_false("source_concept_name" %in% colnames(result1))
expect_true(all(c("standard", "ATC 3rd") %in% unique(result1$analysis)))
expect_no_error(
result2 <- cdm$my_cohort |>
PatientProfiles::addSex() |>
summariseLargeScaleCharacteristics(
strata = list("sex"), window = list(c(-Inf, -1), c(1, Inf)),
eventInWindow = "condition_occurrence",
episodeInWindow = c("ATC 3rd", "drug_exposure"),
includeSource = TRUE
)
)
result2 <- tidy(result2)
expect_true("concept_id" %in% colnames(result2))
expect_true("source_concept_id" %in% colnames(result2))
expect_true("source_concept_name" %in% colnames(result2))
expect_true(all(c("standard-source", "ATC 3rd") %in% unique(result2$analysis)))
expect_true(unique(result2$source_concept_id[result2$analysis == "ATC 3rd"]) == "overall")
expect_true(unique(result2$source_concept_name[result2$analysis == "ATC 3rd"]) == "overall")
atc_result1 <- result1 |>
dplyr::filter(.data$analysis == "ATC 3rd") |>
dplyr::arrange(dplyr::across(dplyr::everything()))
atc_result2 <- result2 |>
dplyr::filter(.data$analysis == "ATC 3rd") |>
dplyr::arrange(dplyr::across(dplyr::everything())) |>
dplyr::select(!c("source_concept_id", "source_concept_name"))
expect_identical(atc_result1, atc_result2)
dropCreatedTables(cdm = cdm)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.