Nothing
#' Performs basic Poisson regression using the omnibus function
#'
#' \code{RunPoissonRegression_Omnibus} uses user provided data, time/event columns,
#' vectors specifying the model, and options to control the convergence and starting positions.
#' Has additional options to starting with several initial guesses
#'
#' @inheritParams R_template
#'
#' @return returns a list of the final results
#' @export
#' @family Poisson Wrapper Functions
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1),
#' "e" = c(0, 0, 1, 0, 0, 0, 1)
#' )
#' # For the interval case
#' pyr <- "Ending_Age"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' a_n <- c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
#' "double_step" = 1
#' )
#' guesses_control <- list(
#' "maxiter" = 10, "guesses" = 10, "lin_min" = 0.001,
#' "lin_max" = 1, "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
#' "loglin_method" = "uniform", strata = FALSE
#' )
#' strat_col <- "e"
#' e <- RunPoissonRegression_Omnibus(
#' df, pyr, event, names, term_n,
#' tform, keep_constant,
#' a_n, modelform,
#' control, strat_col
#' )
#' @importFrom rlang .data
RunPoissonRegression_Omnibus <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), strat_col = "null", model_control = list(), cons_mat = as.matrix(c(0)), cons_vec = c(0)) {
func_t_start <- Sys.time()
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
# df <- setDT(df)
control <- Def_Control(control)
model_control <- Def_model_control(model_control)
val <- Correct_Formula_Order(
term_n, tform, keep_constant, a_n,
names, cons_mat, cons_vec,
control$verbose, model_control
)
term_n <- val$term_n
tform <- val$tform
keep_constant <- val$keep_constant
a_n <- val$a_n
names <- val$names
cons_mat <- as.matrix(val$cons_mat)
cons_vec <- val$cons_vec
if ("para_number" %in% names(model_control)) {
model_control$para_number <- val$para_num
}
if (typeof(a_n) != "list") {
a_n <- list(a_n)
}
df <- df[get(pyr0) > 0, ]
if (control$verbose >= 2) {
if (any(val$Permutation != seq_along(tform))) {
if (control$verbose >= 2) {
warning("Warning: model covariate order changed")
}
}
}
val <- Def_modelform_fix(control, model_control, modelform, term_n)
modelform <- val$modelform
model_control <- val$model_control
if (min(keep_constant) > 0) {
stop("Error: Atleast one parameter must be free")
}
if (sum(df[, event0, with = FALSE]) == 0) {
stop("Error: no events")
}
if ("CONST" %in% names) {
if ("CONST" %in% names(df)) {
# fine
} else {
df$CONST <- 1
}
}
if (model_control$strata == TRUE) {
val <- factorize(df, strat_col)
df0 <- val$df
df <- val$df
val_cols <- c()
for (col in val$cols) {
dftemp <- df[get(col) == 1, ]
temp <- sum(dftemp[, get(event0)])
if (temp == 0) {
if (control$verbose >= 2) {
warning(paste("Warning: no events for strata group:", col,
sep = " "
))
}
df <- df[get(col) != 1, ]
df0 <- df0[get(col) != 1, ]
} else {
val_cols <- c(val_cols, col)
}
data.table::setkeyv(df0, c(pyr0, event0))
}
} else {
df0 <- data.table::data.table("a" = c(0, 0))
val <- list(cols = c("a"))
val_cols <- c("a")
}
data.table::setkeyv(df, c(pyr0, event0))
all_names <- unique(names)
df <- Replace_Missing(df, all_names, 0.0, control$verbose)
dfc <- match(names, all_names)
term_tot <- max(term_n) + 1
x_all <- as.matrix(df[, all_names, with = FALSE])
ce <- c(pyr0, event0)
a_ns <- c()
for (i in a_n) {
a_ns <- c(a_ns, i)
}
if (model_control$log_bound) {
if ("maxiters" %in% names(control)) {
# good
} else {
control$maxiters <- c(control$maxiter)
}
if ("guesses" %in% names(control)) {
# good
} else {
control$guesses <- 10
}
e <- pois_Omnibus_Bounds_transition(
as.matrix(df[, ce, with = FALSE]),
term_n, tform, a_ns, dfc, x_all, 0, modelform, control,
keep_constant, term_tot, as.matrix(df0[, val_cols, with = FALSE]),
model_control, cons_mat, cons_vec
)
if ("Status" %in% names(e)) {
if (e$Status != "PASSED") {
stop(e$Status)
}
}
} else {
if ("maxiters" %in% names(control)) {
if (length(control$maxiters) == length(a_n) + 1) {
# all good, it matches
} else {
if (control$verbose >= 3) {
message(paste("Note: Initial starts:", length(a_n),
", Number of iterations provided:",
length(control$maxiters),
". Colossus requires one more iteration counts than number of guesses (for best guess)",
sep = " "
)) # nocov
}
if (length(control$maxiters) < length(a_n) + 1) {
additional <- length(a_n) + 1 - length(control$maxiters)
control$maxiters <- c(control$maxiters, rep(1, additional))
} else {
additional <- length(a_n) + 1
control$maxiters <- control$maxiters[1:additional]
}
}
if ("guesses" %in% names(control)) {
# both are in
if (control$guesses + 1 == length(control$maxiters)) {
# all good, it matches
} else {
stop(paste("Error: guesses:", control["guesses"],
", iterations per guess:",
control["maxiters"],
sep = " "
))
}
} else {
control$guesses <- length(control$maxiters) - 1
}
} else {
if ("guesses" %in% names(control)) {
if (control$guesses == length(a_n)) {
# both match, all good
} else {
control$guesses <- length(a_n)
}
control$maxiters <- rep(1, control$guesses + 1)
} else {
control$guesses <- length(a_n)
control$maxiters <- c(rep(1, length(a_n)), control$maxiter)
}
}
e <- pois_Omnibus_transition(
as.matrix(df[, ce, with = FALSE]),
term_n, tform, matrix(a_ns,
nrow = length(control$maxiters) - 1,
byrow = TRUE
), dfc, x_all, 0,
modelform, control, keep_constant,
term_tot, as.matrix(df0[, val_cols,
with = FALSE
]),
model_control, cons_mat, cons_vec
)
e$Parameter_Lists$names <- names
e$Parameter_Lists$modelformula <- modelform
e$Survival_Type <- "Poisson"
if (is.nan(e$LogLik)) {
stop(e$Status)
}
}
func_t_end <- Sys.time()
e$RunTime <- func_t_end - func_t_start
# df <- copy(df)
return(e)
}
#' Performs joint Poisson regression using the omnibus function
#'
#' \code{RunPoissonRegression_Joint_Omnibus} uses user provided data, time/event columns,
#' vectors specifying the model, and options to control the convergence and starting positions.
#' Has additional options to starting with several initial guesses, uses joint competing risks equation
#'
#' @inheritParams R_template
#' @param events vector of event column names
#' @param term_n_list list of vectors for term numbers for event specific or shared model elements, defaults to term 0
#' @param tform_list list of vectors for subterm types for event specific or shared model elements, defaults to loglinear
#' @param keep_constant_list list of vectors for constant elements for event specific or shared model elements, defaults to free (0)
#' @param a_n_list list of vectors for parameter values for event specific or shared model elements, defaults to term 0
#' @param name_list list of vectors for columns for event specific or shared model elements, required
#'
#' @return returns a list of the final results
#' @export
#' @family Poisson Wrapper Functions
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' a <- c(0, 0, 0, 1, 1, 1)
#' b <- c(1, 1, 1, 2, 2, 2)
#' c <- c(0, 1, 2, 2, 1, 0)
#' d <- c(1, 1, 0, 0, 1, 1)
#' e <- c(0, 1, 1, 1, 0, 0)
#' f <- c(0, 1, 0, 0, 1, 1)
#' df <- data.table("t0" = a, "t1" = b, "e0" = c, "e1" = d, "fac" = e)
#' time1 <- "t0"
#' time2 <- "t1"
#' df$pyr <- df$t1 - df$t0
#' pyr <- "pyr"
#' events <- c("e0", "e1")
#' names_e0 <- c("fac")
#' names_e1 <- c("fac")
#' names_shared <- c("t0", "t0")
#' term_n_e0 <- c(0)
#' term_n_e1 <- c(0)
#' term_n_shared <- c(0, 0)
#' tform_e0 <- c("loglin")
#' tform_e1 <- c("loglin")
#' tform_shared <- c("quad_slope", "loglin_top")
#' keep_constant_e0 <- c(0)
#' keep_constant_e1 <- c(0)
#' keep_constant_shared <- c(0, 0)
#' a_n_e0 <- c(-0.1)
#' a_n_e1 <- c(0.1)
#' a_n_shared <- c(0.001, -0.02)
#' name_list <- list("shared" = names_shared, "e0" = names_e0, "e1" = names_e1)
#' term_n_list <- list("shared" = term_n_shared, "e0" = term_n_e0, "e1" = term_n_e1)
#' tform_list <- list("shared" = tform_shared, "e0" = tform_e0, "e1" = tform_e1)
#' keep_constant_list <- list(
#' "shared" = keep_constant_shared,
#' "e0" = keep_constant_e0, "e1" = keep_constant_e1
#' )
#' a_n_list <- list("shared" = a_n_shared, "e0" = a_n_e0, "e1" = a_n_e1)
#' modelform <- "M"
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE,
#' "ties" = "breslow", "double_step" = 1
#' )
#' guesses_control <- list(
#' "maxiter" = 10, "guesses" = 10,
#' "lin_min" = 0.001, "lin_max" = 1,
#' "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
#' "loglin_method" = "uniform", strata = FALSE
#' )
#' strat_col <- "f"
#' e <- RunPoissonRegression_Joint_Omnibus(
#' df, pyr, events, name_list,
#' term_n_list,
#' tform_list, keep_constant_list,
#' a_n_list,
#' modelform,
#' control, strat_col
#' )
#' @importFrom rlang .data
RunPoissonRegression_Joint_Omnibus <- function(df, pyr0, events, name_list, term_n_list = list(), tform_list = list(), keep_constant_list = list(), a_n_list = list(), modelform = "M", control = list(), strat_col = "null", model_control = list(), cons_mat = as.matrix(c(0)), cons_vec = c(0)) {
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
val <- Joint_Multiple_Events(
df, events, name_list,
term_n_list, tform_list,
keep_constant_list, a_n_list
)
df <- val$df
names <- val$names
term_n <- val$term_n
tform <- val$tform
keep_constant <- val$keep_constant
a_n <- val$a_n
e <- RunPoissonRegression_Omnibus(
df, pyr0, "events", names,
term_n, tform, keep_constant,
a_n, modelform, control,
strat_col
)
# df <- copy(df)
return(e)
}
#' Performs basic poisson regression
#'
#' \code{RunPoissonRegression} uses user provided data, person-year/event columns, vectors specifying the model, and options to control the convergence and starting positions with no special options
#'
#' @inheritParams R_template
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1)
#' )
#' # For the interval case
#' df$pyr <- df$Ending_Age - df$Starting_Age
#' pyr <- "pyr"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' a_n <- c(0.1, 0.1, 0.1, 0.1)
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "double_step" = 1
#' )
#' e <- RunPoissonRegression(
#' df, pyr, event, names, term_n, tform,
#' keep_constant,
#' a_n, modelform, control
#' )
#' @export
#'
RunPoissonRegression <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list()) {
control <- Def_Control(control)
control$maxiters <- c(1, control$maxiter)
control$guesses <- 1
e <- RunPoissonRegression_Omnibus(
df, pyr0, event0, names, term_n,
tform, keep_constant,
a_n, modelform, control
)
return(e)
}
#' Predicts how many events are due to baseline vs excess
#'
#' \code{RunPoissonEventAssignment} uses user provided data, person-year/event columns, vectors specifying the model, and options to calculate background and excess events
#'
#' @inheritParams R_template
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1)
#' )
#' # For the interval case
#' df$pyr <- df$Ending_Age - df$Starting_Age
#' pyr <- "pyr"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' a_n <- c(0.1, 0.1, 0.1, 0.1)
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "double_step" = 1
#' )
#' e <- RunPoissonEventAssignment(
#' df, pyr, event, names, term_n,
#' tform, keep_constant,
#' a_n, modelform, control
#' )
#' @export
#'
RunPoissonEventAssignment <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), strat_col = "null", model_control = list()) {
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
control <- Def_Control(control)
control$maxiters <- c(1, control$maxiter)
control$guesses <- 1
control <- Def_Control(control)
val <- Correct_Formula_Order(
term_n, tform, keep_constant, a_n,
names, as.matrix(c(0)),
c(0), control$verbose
)
term_n <- val$term_n
tform <- val$tform
keep_constant <- val$keep_constant
a_n <- val$a_n
names <- val$names
df <- df[get(pyr0) > 0, ]
model_control <- Def_model_control(model_control)
val <- Def_modelform_fix(control, model_control, modelform, term_n)
modelform <- val$modelform
model_control <- val$model_control
if (min(keep_constant) > 0) {
stop("Error: Atleast one parameter must be free")
}
if (sum(df[, event0, with = FALSE]) == 0) {
stop("Error: no events")
}
if ("CONST" %in% names) {
if ("CONST" %in% names(df)) {
# fine
} else {
df$CONST <- 1
}
}
if (model_control$strata == TRUE) {
val <- factorize(df, strat_col)
df0 <- val$df
df <- val$df
val_cols <- c()
for (col in val$cols) {
dftemp <- df[get(col) == 1, ]
temp <- sum(dftemp[, get(event0)])
if (temp == 0) {
if (control$verbose >= 2) {
warning(paste("Warning: no events for strata group:", col,
sep = " "
))
}
df <- df[get(col) != 1, ]
df0 <- df0[get(col) != 1, ]
} else {
val_cols <- c(val_cols, col)
}
data.table::setkeyv(df0, c(pyr0, event0))
}
} else {
df0 <- data.table::data.table("a" = c(0, 0))
val <- list(cols = c("a"))
val_cols <- c("a")
}
data.table::setkeyv(df, c(pyr0, event0))
all_names <- unique(names)
df <- Replace_Missing(df, all_names, 0.0, control$verbose)
dfc <- match(names, all_names)
term_tot <- max(term_n) + 1
x_all <- as.matrix(df[, all_names, with = FALSE])
ce <- c(pyr0, event0)
a_ns <- c()
for (i in a_n) {
a_ns <- c(a_ns, i)
}
e <- Assigned_Event_Poisson_transition(
as.matrix(df[, ce, with = FALSE]),
as.matrix(df0), term_n, tform,
a_n, dfc, x_all, 0,
modelform, control, keep_constant,
term_tot, model_control
)
# df <- copy(df)
return(e)
}
#' Predicts how many events are due to baseline vs excess at the confidence bounds of a single parameter
#'
#' \code{RunPoissonEventAssignment_bound} uses user provided data, the results of a poisson regression, and options to calculate background and excess events
#'
#' @inheritParams R_template
#' @param check_num the parameter number to check at the bounds of, indexed from 1 using the order returned by Colossus
#' @param z Z score to use for confidence interval
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1),
#' "e" = c(0, 0, 1, 0, 0, 0, 1)
#' )
#' # For the interval case
#' pyr <- "Ending_Age"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' a_n <- c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
#' "double_step" = 1
#' )
#' guesses_control <- list(
#' "maxiter" = 10, "guesses" = 10, "lin_min" = 0.001,
#' "lin_max" = 1, "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
#' "loglin_method" = "uniform", strata = FALSE
#' )
#' strat_col <- "e"
#' e0 <- RunPoissonRegression_Omnibus(
#' df, pyr, event, names, term_n, tform,
#' keep_constant,
#' a_n, modelform,
#' control, strat_col
#' )
#' e <- RunPoissonEventAssignment_bound(
#' df, pyr, event, e0, keep_constant,
#' modelform, 4, 2, control
#' )
#' @export
#'
RunPoissonEventAssignment_bound <- function(df, pyr0 = "pyr", event0 = "event", alternative_model = list(), keep_constant = c(0), modelform = "M", check_num = 1, z = 2, control = list(), strat_col = "null", model_control = list()) {
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
names <- alternative_model$Parameter_Lists$names
term_n <- alternative_model$Parameter_Lists$term_n
tform <- alternative_model$Parameter_Lists$tforms
a_n <- alternative_model$beta_0
stdev <- alternative_model$Standard_Deviation
e_mid <- RunPoissonEventAssignment(
df, pyr0, event0, names, term_n,
tform, keep_constant, a_n, modelform,
control, strat_col,
model_control
)
a_n <- alternative_model$beta_0
a_n[check_num] <- a_n[check_num] - z * stdev[check_num]
e_low <- RunPoissonEventAssignment(
df, pyr0, event0, names, term_n,
tform, keep_constant, a_n, modelform,
control, strat_col,
model_control
)
a_n <- alternative_model$beta_0
a_n[check_num] <- a_n[check_num] + z * stdev[check_num]
e_high <- RunPoissonEventAssignment(
df, pyr0, event0, names,
term_n, tform, keep_constant,
a_n, modelform,
control, strat_col,
model_control
)
bound_results <- list(
"lower_limit" = e_low, "midpoint" = e_mid,
"upper_limit" = e_high
)
# df <- copy(df)
return(bound_results)
}
#' Performs poisson regression with no derivative calculations
#'
#' \code{RunPoissonRegression_Single} uses user provided data, person-year/event columns, vectors specifying the model, and returns the results
#'
#' @inheritParams R_template
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1)
#' )
#' # For the interval case
#' df$pyr <- df$Ending_Age - df$Starting_Age
#' pyr <- "pyr"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' a_n <- c(0.1, 0.1, 0.1, 0.1)
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
#' "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
#' "abs_max" = 1.0, "dose_abs_max" = 100.0,
#' "verbose" = FALSE, "double_step" = 1
#' )
#' e <- RunPoissonRegression_Single(
#' df, pyr, event, names,
#' term_n, tform, a_n, modelform,
#' control
#' )
#' @export
#'
RunPoissonRegression_Single <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", a_n = c(0), modelform = "M", control = list(), keep_constant = rep(0, length(names))) {
control <- Def_Control(control)
control$maxiters <- c(1, control$maxiter)
control$guesses <- 1
e <- RunPoissonRegression_Omnibus(df, pyr0, event0, names, term_n,
tform, keep_constant,
a_n, modelform, control,
model_control = list("single" = TRUE)
)
return(e)
}
#' Performs poisson regression with strata effect
#'
#' \code{RunPoissonRegression_Strata} uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions
#'
#' @inheritParams R_template
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @export
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1),
#' "e" = c(0, 0, 0, 0, 1, 0, 1)
#' )
#' # For the interval case
#' df$pyr <- df$Ending_Age - df$Starting_Age
#' pyr <- "pyr"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' a_n <- c(0.1, 0.1, 0.1, 0.1)
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
#' "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
#' "abs_max" = 1.0, "dose_abs_max" = 100.0,
#' "verbose" = FALSE, "double_step" = 1
#' )
#' strat_col <- c("e")
#' e <- RunPoissonRegression_Strata(
#' df, pyr, event, names,
#' term_n, tform, keep_constant,
#' a_n, modelform, control, strat_col
#' )
#'
RunPoissonRegression_Strata <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), strat_col = "null") {
control <- Def_Control(control)
control$maxiters <- c(1, control$maxiter)
control$guesses <- 1
e <- RunPoissonRegression_Omnibus(df, pyr0, event0, names, term_n,
tform, keep_constant, a_n,
modelform, control,
strat_col,
model_control = list("strata" = TRUE)
)
return(e)
}
#' Performs basic poisson regression, with multiple guesses, starts with a single term
#'
#' \code{RunPoissonRegression_Tier_Guesses} uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions, with additional guesses
#'
#' @inheritParams R_template
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @export
#'
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1),
#' "e" = c(0, 0, 0, 0, 1, 0, 1)
#' )
#' # For the interval case
#' df$pyr <- df$Ending_Age - df$Starting_Age
#' pyr <- "pyr"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' a_n <- c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "double_step" = 1
#' )
#' guesses_control <- list(
#' "iterations" = 10, "guesses" = 10,
#' "lin_min" = 0.001, "lin_max" = 1,
#' "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
#' "loglin_method" = "uniform", strata = TRUE, term_initial = c(0, 1)
#' )
#' strat_col <- c("e")
#' options(warn = -1)
#' e <- RunPoissonRegression_Tier_Guesses(
#' df, pyr, event, names,
#' term_n, tform, keep_constant, a_n, modelform,
#' control, guesses_control, strat_col
#' )
#'
#' @importFrom rlang .data
RunPoissonRegression_Tier_Guesses <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), guesses_control = list(), strat_col = "null", model_control = list()) {
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
control <- Def_Control(control)
guesses_control <- Def_Control_Guess(guesses_control, a_n)
t_initial <- guesses_control$term_initial
if (min(keep_constant) > 0) {
stop("Error: Atleast one parameter must be free")
}
rmin <- guesses_control$rmin
rmax <- guesses_control$rmax
if (length(rmin) != length(rmax)) {
if (control$verbose >= 2) {
warning("Warning: rmin and rmax lists not equal size, defaulting to lin and loglin min/max values")
}
}
name_initial <- c()
term_n_initial <- c()
tform_initial <- c()
constant_initial <- c()
a_n_initial <- c()
guess_constant <- c()
for (i in seq_len(length(a_n))) {
if (term_n[i] %in% t_initial) {
name_initial <- c(name_initial, names[i])
term_n_initial <- c(term_n_initial, term_n[i])
tform_initial <- c(tform_initial, tform[i])
constant_initial <- c(constant_initial, keep_constant[i])
a_n_initial <- c(a_n_initial, a_n[i])
guess_constant <- c(guess_constant, 0)
}
}
guesses_control$guess_constant <- guess_constant
guess_second <- guesses_control$guesses
guesses_control$guesses <- guesses_control$guesses_start
e <- RunPoissonRegression_Guesses_CPP(
df, pyr0, event0, name_initial,
term_n_initial,
tform_initial, constant_initial,
a_n_initial,
modelform, control,
guesses_control,
strat_col, model_control
)
if (guesses_control$verbose >= 3) {
message("Note: INITIAL TERM COMPLETE") # nocov
message(e) # nocov
}
a_n_initial <- unlist(e$beta_0, use.names = FALSE)
guess_constant <- c()
j <- 1
for (i in seq_len(length(a_n))) {
if (term_n[i] %in% t_initial) {
a_n[i] <- a_n_initial[j]
j <- j + 1
guess_constant <- c(guess_constant, 1)
} else {
guess_constant <- c(guess_constant, 0)
}
}
guesses_control$guess_constant <- guess_constant
guesses_control$guesses <- guess_second
e <- RunPoissonRegression_Guesses_CPP(
df, pyr0, event0, names,
term_n, tform,
keep_constant, a_n, modelform,
control, guesses_control, strat_col, model_control
)
# df <- copy(df)
return(e)
}
#' Performs basic Poisson regression, generates multiple starting guesses on c++ side
#'
#' \code{RunPoissonRegression_Guesses_CPP} uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Has additional options to starting with several initial guesses
#'
#' @inheritParams R_template
#' @family Poisson Wrapper Functions
#' @return returns a list of the final results
#' @export
#'
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1),
#' "e" = c(0, 0, 1, 0, 0, 0, 1)
#' )
#' # For the interval case
#' pyr <- "Ending_Age"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' a_n <- c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
#' "double_step" = 1
#' )
#' guesses_control <- list(
#' "maxiter" = 10, "guesses" = 10,
#' "lin_min" = 0.001, "lin_max" = 1,
#' "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
#' "loglin_method" = "uniform", strata = FALSE
#' )
#' strat_col <- "e"
#' options(warn = -1)
#' e <- RunPoissonRegression_Guesses_CPP(
#' df, pyr, event, names, term_n,
#' tform, keep_constant, a_n, modelform,
#' control, guesses_control, strat_col
#' )
#' @importFrom rlang .data
RunPoissonRegression_Guesses_CPP <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), guesses_control = list(), strat_col = "null", model_control = list()) {
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
if (typeof(a_n) != "list") {
a_n <- list(a_n)
}
control <- Def_Control(control)
if ("strata" %in% names(guesses_control)) {
if ("strata" %in% names(model_control)) {
if (guesses_control$strata != model_control$strata) {
stop("Error: guesses_control and model_control have different strata options")
}
} else {
model_control$strata <- guesses_control$strata
}
} else if ("strata" %in% names(model_control)) {
guesses_control$strata <- model_control$strata
}
guesses_control <- Def_Control_Guess(guesses_control, a_n[[1]])
model_control <- Def_model_control(model_control)
val <- Def_modelform_fix(control, model_control, modelform, term_n)
modelform <- val$modelform
model_control <- val$model_control
if (min(keep_constant) > 0) {
stop("Error: Atleast one parameter must be free")
}
if ("CONST" %in% names) {
if ("CONST" %in% names(df)) {
# fine
} else {
df$CONST <- 1
}
}
a_n_default <- rep(0, length(a_n[[1]]))
for (i in seq_along(a_n[[1]])) {
a_n_default[i] <- a_n[[1]][i]
}
data.table::setkeyv(df, c(pyr0, event0))
all_names <- unique(names)
df <- Replace_Missing(df, all_names, 0.0, control$verbose)
dfc <- match(names, all_names)
x_all <- as.matrix(df[, all_names, with = FALSE])
dat_val <- Gather_Guesses_CPP(
df, dfc, names, term_n, tform,
keep_constant, a_n,
x_all, a_n_default, modelform,
control, guesses_control
)
a_ns <- dat_val$a_ns
maxiters <- dat_val$maxiters
control$maxiters <- c(maxiters, control$maxiter)
control$guesses <- length(maxiters)
a_n_mat <- matrix(a_ns, nrow = length(control$maxiters) - 1, byrow = TRUE)
a_n <- lapply(seq_len(nrow(a_n_mat)), function(i) a_n_mat[i, ])
e <- RunPoissonRegression_Omnibus(df, pyr0, event0, names, term_n,
tform, keep_constant, a_n,
modelform, control,
model_control = model_control,
strat_col = strat_col
)
# df <- copy(df)
return(e)
}
#' Calculates poisson residuals
#'
#' \code{RunPoissonRegression_Residual} uses user provided data, time/event columns,
#' vectors specifying the model, and options. Calculates residuals or sum of residuals
#'
#' @inheritParams R_template
#'
#' @return returns a list of the final results
#' @export
#' @family Poisson Wrapper Functions
#' @examples
#' library(data.table)
#' ## basic example code reproduced from the starting-description vignette
#' df <- data.table::data.table(
#' "UserID" = c(112, 114, 213, 214, 115, 116, 117),
#' "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
#' "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
#' "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
#' "a" = c(0, 1, 1, 0, 1, 0, 1),
#' "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
#' "c" = c(10, 11, 10, 11, 12, 9, 11),
#' "d" = c(0, 0, 0, 1, 1, 1, 1),
#' "e" = c(0, 0, 1, 0, 0, 0, 1)
#' )
#' # For the interval case
#' pyr <- "Ending_Age"
#' event <- "Cancer_Status"
#' names <- c("a", "b", "c", "d")
#' a_n <- c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
#' term_n <- c(0, 1, 1, 2)
#' tform <- c("loglin", "lin", "lin", "plin")
#' modelform <- "M"
#' keep_constant <- c(0, 0, 0, 0)
#' control <- list(
#' "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
#' "halfmax" = 5, "epsilon" = 1e-3,
#' "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
#' "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
#' "double_step" = 1
#' )
#' guesses_control <- list(
#' "maxiter" = 10, "guesses" = 10,
#' "lin_min" = 0.001, "lin_max" = 1,
#' "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
#' "loglin_method" = "uniform", strata = FALSE
#' )
#' strat_col <- "e"
#' e <- RunPoissonRegression_Residual(
#' df, pyr, event, names, term_n,
#' tform, keep_constant,
#' a_n, modelform,
#' control, strat_col
#' )
#' @importFrom rlang .data
RunPoissonRegression_Residual <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), strat_col = "null", model_control = list()) {
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
cons_mat <- as.matrix(c(0))
cons_vec <- c(0)
control <- Def_Control(control)
val <- Correct_Formula_Order(
term_n, tform, keep_constant, a_n,
names, cons_mat, cons_vec,
control$verbose
)
term_n <- val$term_n
tform <- val$tform
keep_constant <- val$keep_constant
a_n <- val$a_n
names <- val$names
cons_mat <- as.matrix(val$cons_mat)
cons_vec <- val$cons_vec
if (typeof(a_n) != "list") {
a_n <- list(a_n)
}
df <- df[get(pyr0) > 0, ]
if (any(val$Permutation != seq_along(tform))) {
if (control$verbose >= 2) {
warning("Warning: model covariate order changed")
}
}
model_control <- Def_model_control(model_control)
val <- Def_modelform_fix(control, model_control, modelform, term_n)
modelform <- val$modelform
model_control <- val$model_control
if (min(keep_constant) > 0) {
stop("Error: Atleast one parameter must be free")
}
if (sum(df[, event0, with = FALSE]) == 0) {
stop("Error: no events")
}
if ("CONST" %in% names) {
if ("CONST" %in% names(df)) {
# fine
} else {
df$CONST <- 1
}
}
if (model_control$strata == TRUE) {
val <- factorize(df, strat_col)
df0 <- val$df
df <- val$df
val_cols <- c()
for (col in val$cols) {
dftemp <- df[get(col) == 1, ]
temp <- sum(dftemp[, get(event0)])
if (temp == 0) {
if (control$verbose >= 2) {
warning(paste("Warning: no events for strata group:",
col,
sep = " "
))
}
df <- df[get(col) != 1, ]
df0 <- df0[get(col) != 1, ]
} else {
val_cols <- c(val_cols, col)
}
data.table::setkeyv(df0, c(pyr0, event0))
}
} else {
df0 <- data.table::data.table("a" = c(0, 0))
val <- list(cols = c("a"))
val_cols <- c("a")
}
data.table::setkeyv(df, c(pyr0, event0))
all_names <- unique(names)
df <- Replace_Missing(df, all_names, 0.0, control$verbose)
dfc <- match(names, all_names)
term_tot <- max(term_n) + 1
x_all <- as.matrix(df[, all_names, with = FALSE])
ce <- c(pyr0, event0)
e <- pois_Residual_transition(
as.matrix(df[, ce, with = FALSE]),
term_n, tform, a_n[[1]],
dfc, x_all, 0, modelform,
control, keep_constant,
term_tot, as.matrix(df0[, val_cols,
with = FALSE
]),
model_control
)
# df <- copy(df)
return(e)
}
#' Calculates the likelihood curve for a poisson model directly
#'
#' \code{PoissonCurveSolver} solves the confidence interval for a poisson model, starting at the optimum point and
#' iteratively optimizing each point to using the bisection method
#'
#' @inheritParams R_template
#'
#' @return returns a list of the final results
#' @export
#' @family Poisson Wrapper Functions
#' @importFrom rlang .data
PoissonCurveSolver <- function(df, pyr0 = "pyr", event0 = "event", names = c("CONST"), term_n = c(0), tform = "loglin", keep_constant = c(0), a_n = c(0), modelform = "M", control = list(), strat_col = "null", model_control = list(), cons_mat = as.matrix(c(0)), cons_vec = c(0)) {
func_t_start <- Sys.time()
tryCatch(
{
df <- setDT(df)
},
error = function(e) {
df <- data.table(df)
}
)
control <- Def_Control(control)
model_control <- Def_model_control(model_control)
val <- Correct_Formula_Order(
term_n, tform, keep_constant, a_n,
names, cons_mat, cons_vec,
control$verbose, model_control
)
term_n <- val$term_n
tform <- val$tform
keep_constant <- val$keep_constant
a_n <- val$a_n
names <- val$names
cons_mat <- as.matrix(val$cons_mat)
cons_vec <- val$cons_vec
if ("para_number" %in% names(model_control)) {
model_control$para_number <- val$para_num
}
if (typeof(a_n) != "list") {
a_n <- list(a_n)
}
df <- df[get(pyr0) > 0, ]
if (control$verbose >= 2) {
if (any(val$Permutation != seq_along(tform))) {
if (control$verbose >= 2) {
warning("Warning: model covariate order changed")
}
}
}
val <- Def_modelform_fix(control, model_control, modelform, term_n)
modelform <- val$modelform
model_control <- val$model_control
if (min(keep_constant) > 0) {
stop("Error: Atleast one parameter must be free")
}
if (sum(df[, event0, with = FALSE]) == 0) {
stop("Error: no events")
}
if ("CONST" %in% names) {
if ("CONST" %in% names(df)) {
# fine
} else {
df$CONST <- 1
}
}
if (model_control$strata == TRUE) {
val <- factorize(df, strat_col)
df0 <- val$df
df <- val$df
val_cols <- c()
for (col in val$cols) {
dftemp <- df[get(col) == 1, ]
temp <- sum(dftemp[, get(event0)])
if (temp == 0) {
if (control$verbose >= 2) {
warning(paste("Warning: no events for strata group:", col,
sep = " "
))
}
df <- df[get(col) != 1, ]
df0 <- df0[get(col) != 1, ]
} else {
val_cols <- c(val_cols, col)
}
data.table::setkeyv(df0, c(pyr0, event0))
}
} else {
df0 <- data.table::data.table("a" = c(0, 0))
val <- list(cols = c("a"))
val_cols <- c("a")
}
data.table::setkeyv(df, c(pyr0, event0))
all_names <- unique(names)
df <- Replace_Missing(df, all_names, 0.0, control$verbose)
dfc <- match(names, all_names)
term_tot <- max(term_n) + 1
x_all <- as.matrix(df[, all_names, with = FALSE])
ce <- c(pyr0, event0)
a_ns <- c()
for (i in a_n) {
a_ns <- c(a_ns, i)
}
if ("maxiters" %in% names(control)) {
if (length(control$maxiters) == length(a_n) + 1) {
# all good, it matches
} else {
if (control$verbose >= 3) {
message(paste("Note: Initial starts:", length(a_n),
", Number of iterations provided:",
length(control$maxiters),
". Colossus requires one more iteration counts than number of guesses (for best guess)",
sep = " "
)) # nocov
}
if (length(control$maxiters) < length(a_n) + 1) {
additional <- length(a_n) + 1 - length(control$maxiters)
control$maxiters <- c(control$maxiters, rep(1, additional))
} else {
additional <- length(a_n) + 1
control$maxiters <- control$maxiters[1:additional]
}
}
if ("guesses" %in% names(control)) {
# both are in
if (control$guesses + 1 == length(control$maxiters)) {
# all good, it matches
} else {
stop(paste("Error: guesses:", control["guesses"],
", iterations per guess:",
control["maxiters"],
sep = " "
))
}
} else {
control$guesses <- length(control$maxiters) - 1
}
} else {
if ("guesses" %in% names(control)) {
if (control$guesses == length(a_n)) {
# both match, all good
} else {
control$guesses <- length(a_n)
}
control$maxiters <- rep(1, control$guesses + 1)
} else {
control$guesses <- length(a_n)
control$maxiters <- c(rep(1, length(a_n)), control$maxiter)
}
}
if ("alpha" %in% names(model_control)) {
model_control["qchi"] <- qchisq(1 - model_control[["alpha"]], df = 1) / 2
} else {
model_control["alpha"] <- 0.05
model_control["qchi"] <- qchisq(1 - model_control[["alpha"]], df = 1) / 2
}
para_num <- model_control$para_num + 1 # 3
keep_constant[para_num] <- 1
if (min(keep_constant) == 1) {
model_control["single"] <- TRUE
}
e <- pois_Omnibus_CurveSearch_transition(
as.matrix(df[, ce, with = FALSE]),
term_n, tform, a_ns, dfc, x_all, 0, modelform, control,
keep_constant, term_tot, as.matrix(df0[, val_cols, with = FALSE]),
model_control, cons_mat, cons_vec
)
e$Parameter_Lists$names <- names
e$Parameter_Lists$modelformula <- modelform
e$Survival_Type <- "Poisson"
func_t_end <- Sys.time()
e$RunTime <- func_t_end - func_t_start
# df <- copy(df)
return(e)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.