# pgfIpoissonlindley: Function pgfIpoissonlindley In Compounding: Computing Continuous Distributions

## Description

This function calculates value of the pgf's inverse derivative of the Poisson-Lindley distribution.

## Usage

 `1` ```pgfIpoissonlindley(s, params) ```

## Arguments

 `s` Value of the parameter of the pgf. It should be from interval [-1,1]. In the opposite pgf diverges. `params` Positive parameter of the Poisson-Lindley distribution, such that params<-theta.

## Author(s)

S. Nadarajah, B. V. Popovic, M. M. Ristic

## References

Johnson N, Kotz S, Kemp A (1992) Univariate Discrete Distributions, John Wiley and Sons, New York

http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15``` ```params<-5 pgfIpoissonlindley(.9,params) ## The function is currently defined as pgfIpoissonlindley <- function(s,params) { xval<-length(s) theta<-params[1] for (i in 1:length(s)) { func<-function(x) pgfpoissonlindley(x,params)-s[i] xval[i]<-uniroot(func,lower=0,upper=1)\$root } xval } ```

Compounding documentation built on May 30, 2017, 4:02 a.m.