Nothing
#' @title Minimum connectedness portfolio
#' @description This function calculates the minimum connectedness portfolio
#' @param x zoo return matrix (in percentage)
#' @param H Pairwise connectedness matrix or alternatively variance-covariance or correlation matrix
#' @param method Cumulative sum or cumulative product
#' @param long Allow only long portfolio position
#' @param statistics Hedging effectiveness statistic
#' @param metric Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)
#' @param digit Number of decimal places
#' @return Get portfolio weights
#' @examples
#' data("g2020")
#' fit = VAR(g2020, configuration=list(nlag=1))
#' dca = TimeConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=10, generalized=TRUE)
#' mcp = MinimumConnectednessPortfolio(g2020/100, dca$PCI, statistics="Fisher")
#' mcp$TABLE
#' @references
#' Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness portfolios and the market for green bonds: Advocating socially responsible investment (SRI) activity. In Applications in Energy Finance (pp. 217-253). Palgrave Macmillan, Cham.
#'
#' Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.
#'
#' Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.
#' @author David Gabauer
#' @export
MinimumConnectednessPortfolio = function (x, H, method = c("cumsum", "cumprod"), statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"), long = TRUE, metric="StdDev", digit = 2) {
message("The minimum connectedness portfolio is implemented according to:\n Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness portfolios and the market for green bonds: Advocating socially responsible investment (SRI) activity. In Applications in Energy Finance (pp. 217-253). Palgrave Macmillan, Cham.\n\n Hedging effectiveness is calculated according to:\n Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.\n\n Statistics of the hedging effectiveness measure are implemented according to:\n Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.")
method = match.arg(method)
statistics = match.arg(statistics)
if (!is(x, "zoo")) {
stop("Data needs to be of type 'zoo'")
}
k = ncol(x)
t = nrow(x)
date = as.character(rownames(x))
NAMES = colnames(x)
I = matrix(1, k, 1)
if (length(dim(H)) == 2) {
H = array(H, c(k, k, 1))
}
if (dim(H)[[3]] == 1) {
H = array(H, c(k, k, t), dimnames = list(NAMES, NAMES, date))
}
portfolio_weights = array(NA, c(t, k), dimnames = list(date, NAMES))
for (i in 1:t) {
V_inv = MASS::ginv(H[, , i])
pw = (V_inv %*% I)/c(t(I) %*% V_inv %*% I)
if (long) {
pw = ifelse(pw < 0, 0, pw)
pw = ifelse(pw > 1, 1, pw)
pw = pw/sum(pw)
}
portfolio_weights[i, ] = pw
}
summary = NULL
for (i in 1:k) {
x_ = as.matrix(portfolio_weights[, i])
summary_ = matrix(NA, nrow = ncol(x_), ncol = 4)
for (ij in 1:ncol(x_)) {
summary_[ij, ] = matrix(c(mean(x_[, ij]),
stats::sd(x_[, ij]),
stats::quantile(x_[, ij], 0.05),
stats::quantile(x_[, ij], 0.95)), nrow = 1)
}
colnames(summary_) = c("Mean", "Std.Dev.", "5%", "95%")
summary = rbind(summary, summary_)
}
rownames(summary) = NAMES
portfolio_return = array(NA, c(t, 1), dimnames = list(date))
for (i in 1:t) {
portfolio_return[i, ] = sum(portfolio_weights[i, ] * as.numeric(x[i, ]))
}
if (method == "cumsum") {
cumulative_portfolio_return = cumsum(portfolio_return)
} else if (method == "cumprod") {
cumulative_portfolio_return = cumprod(1 + portfolio_return) - 1
}
SR = HE = pvalue = array(NA, c(k, 1), dimnames = list(NAMES))
for (i in 1:k) {
HE[i, ] = 1 - var(portfolio_return)/var(x[, i])
z = zoo::zoo(portfolio_return, order.by=zoo::index(x))
SR[i,] = PerformanceAnalytics::SharpeRatio(z, FUN=(metric), annualize=TRUE)
df = rbind(data.frame(val = x[, i], group = "A"),
data.frame(val = portfolio_return, group = "B"))
pvalue[i, ] = VarianceTest(val ~ as.character(group), data = df, method = statistics)$p.value
}
TABLE = cbind(summary, HE, pvalue, SR)
colnames(TABLE) = c("Mean", "Std.Dev.", "5%", "95%", "HE", "p-value", "SR")
return = list(TABLE = format(round(TABLE, digit), nsmall = digit),
portfolio_weights = portfolio_weights, HE = HE, pvalue = pvalue,
portfolio_return = portfolio_return, cumulative_portfolio_return = cumulative_portfolio_return)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.