Nothing
#' read_1file
#'
#' Reads pre-formatted dyadic (2 interlocutor) conversation transcript already imported into your R environment.
#'
#' @name read_1file
#' @param my_dat one conversation transcript already in the R environment
#' @returns
#' a dataframe formatted with 'Event_ID', "Participant_ID", "Text_Raw" fields -- ready for clean_dyads()
#' @export
read_1file <- function(my_dat) {
#returns name not contents of mydat
object_name <- deparse(substitute(my_dat))
# Convert to data frame if not already
if (!is.data.frame(my_dat)) {
my_dat <- as.data.frame(my_dat)
}
# Store original column names for reference
original_cols <- colnames(my_dat)
# Standardize column names (case-insensitive)
colnames(my_dat) <- tolower(colnames(my_dat))
# Initialize standardized columns
standardized_cols <- colnames(my_dat)
# Participant ID detection and standardization
participant_pattern <- "speaker|speaker_names_raw|participant|interlocutor|patient|person|partner|source|pid|talker"
participant_idx <- grepl(participant_pattern, colnames(my_dat))
if (sum(participant_idx) > 0) {
standardized_cols[participant_idx] <- "Participant_ID"
}
# RawText detection and standardization
text_pattern <- "text|turn|talker|mytext|utterance|my_text"
text_idx <- grepl(text_pattern, colnames(my_dat))
if (sum(text_idx) > 0) {
standardized_cols[text_idx] <- "RawText"
}
# Apply standardized names
colnames(my_dat) <- standardized_cols
# Check required columns exist
required_cols <- c("Participant_ID", "RawText")
missing_cols <- setdiff(required_cols, colnames(my_dat))
if (length(missing_cols) > 0) {
stop(paste("Missing required columns:",
paste(missing_cols, collapse = ", "),
"\nAvailable columns:",
paste(original_cols, collapse = ", "),
"\nExpected participant columns should match:", participant_pattern,
"\nExpected text columns should match:", text_pattern),
call. = FALSE)
}
# Add Event_ID using the object's name
my_dat$Event_ID <- object_name
# Convert ID columns to factors
id_cols <- c("Event_ID", "Participant_ID")
for (col in id_cols) {
if (col %in% colnames(my_dat)) {
my_dat[[col]] <- as.factor(my_dat[[col]])
}
}
# Reorder columns to put standard ones first
standard_cols <- c("Event_ID", "Participant_ID", "RawText")
other_cols <- setdiff(colnames(my_dat), standard_cols)
my_dat <- my_dat[, c(standard_cols, other_cols)]
return(my_dat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.