Nothing
Weib.reg.cBB1=function(x.obs,y.obs,dx,dy,zx,zy,zxy,
convergence.par=FALSE){
x.obs[x.obs<=0]=min(1,min(x.obs[x.obs>0]))
y.obs[y.obs<=0]=min(1,min(y.obs[y.obs>0]))
tx = x.obs
ty = y.obs
zx = as.matrix(zx)
zy = as.matrix(zy)
zxy = as.matrix(zxy)
px = ncol(zx)
py = ncol(zy)
pxy = ncol(zxy)
N = length(x.obs)
mx=sum(dx)
my=sum(dy)
mxy=sum(dx*dy)
count=c(N=N,Event.X=mx,Event.Y=my)
CEN=c(Censor.X=(N-mx)/N,Censor.Y=(N-my)/N)
## Likelihood function ##
l.func=function(phi){
gx=exp(pmax(pmin(phi[1:2], 500), -500))
gy=exp(pmax(pmin(phi[3:4], 500), -500))
a=min(exp(phi[5]), exp(3))
d=min(exp(phi[6]), exp(3))
bx=phi[(6+1):(6+px)]
by=phi[(6+px+1):(6+px+py)]
bxy=phi[(6+px+py+1):(6+px+py+pxy)]
bzx=as.vector(zx%*%bx)
bzy=as.vector(zy%*%by)
bzxy=as.vector(zxy%*%bxy)
a=pmin(a*exp(bzxy),exp(3))
Sx=pmin(exp(a*exp(bzx)*gx[1]*tx^gx[2]),exp(500))
Sy=pmin(exp(a*exp(bzy)*gy[1]*ty^gy[2]),exp(500))
A=1+((Sx-1)^(d+1)+(Sy-1)^(d+1))^(1/(d+1))
Ex=Sx/A*((Sx-1)/(A-1))^d
Ey=Sy/A*((Sy-1)/(A-1))^d
logR=log(a+1+a*d*A/(A-1))
l=mx*(log(gx[1])+log(gx[2]))+(gx[2]-1)*sum(dx*log(tx))+sum(dx*bzx)
l=l+my*(log(gy[1])+log(gy[2]))+(gy[2]-1)*sum(dy*log(ty))+sum(dy*bzy)
l=l+sum(dx*dy*logR)+sum(dx*log(Ex))+sum(dy*log(Ey))-sum(1/a*log(A))
-l
}
p0=rep(0,6+px+py+pxy)
p0[c(1,3)]=p0[c(1,3)]-log(c(mean(tx),mean(ty)))
res=nlm(l.func,p=p0,hessian=TRUE)
ML=-res$minimum
HL=-res$hessian
V=solve(-HL,tol=10^(-50))
DF=6+px+py+pxy
AIC=2*DF-2*(-l.func(res$estimate))
BIC=log(N)*DF-2*(-l.func(res$estimate))
convergence_res=c(ML=ML,DF=DF,AIC=AIC,BIC=BIC,code=res$code,
No.of.iterations=res$iterations)
est=c(exp(res$est[1:6]),res$est[(6+1):(6+px+py+pxy)])
D=diag(c(est[1:6],rep(1,px+py+pxy)))
est_var=D%*%V%*%D
bx_est=res$est[(6+1):(6+px)]
by_est=res$est[(6+px+1):(6+px+py)]
bxy_est=res$est[(6+px+py+1):(6+px+py+pxy)]
g_est=exp(res$est[1:2])
h_est=exp(res$est[3:4])
a_est=exp(res$est[5])
d_est=exp(res$est[6])
tau_est=1-2/(a_est+2)/(d_est+1)
bx_se=sqrt(diag(V)[(6+1):(6+px)])
by_se=sqrt(diag(V)[(6+px+1):(6+px+py)])
bxy_se=sqrt(diag(V)[(6+px+py+1):(6+px+py+pxy)])
a_se=a_est*sqrt(diag(V)[5])
d_se=d_est*sqrt(diag(V)[6])
D=c(a_est/(a_est+2),d_est/(d_est+1))
tau_se=(1-tau_est)*sqrt(t(D)%*%V[c(5,6),c(5,6)]%*%D)
g_var=diag(g_est)%*%V[1:2,1:2]%*%diag(g_est)
h_var=diag(h_est)%*%V[3:4,3:4]%*%diag(h_est)
g_se=sqrt(diag(g_var))
h_se=sqrt(diag(h_var))
bx_res=c(estimate=bx_est,SE=bx_se,
Lower=bx_est-1.96*bx_se,Upper=bx_est+1.96*bx_se)
by_res=c(estimate=by_est,SE=by_se,
Lower=by_est-1.96*by_se,Upper=by_est+1.96*by_se)
bxy_res=c(estimate=bxy_est,SE=bxy_se,
Lower=bxy_est-1.96*bxy_se,Upper=bxy_est+1.96*bxy_se)
a_Lower=a_est*exp(-1.96*sqrt(diag(V)[5]))
a_Upper=a_est*exp(1.96*sqrt(diag(V)[5]))
a_res=c(Estimate=a_est,SE=a_se,Lower=a_Lower,Upper=a_Upper)
d_Lower=d_est*exp(-1.96*sqrt(diag(V)[6]))
d_Upper=d_est*exp(1.96*sqrt(diag(V)[6]))
d_res=c(Estimate=d_est,SE=d_se,Lower=d_Lower,Upper=d_Upper)
tau_res=c(Estimate=tau_est,SE=tau_se,
Lower=tau_est-1.96*tau_se,Upper=tau_est+1.96*tau_se)
rx_res=c(Estimate=g_est[1],SE=g_se[1],
Lower=g_est[1]*exp(-1.96*sqrt(diag(V)[1:1])),
Upper=g_est[1]*exp(+1.96*sqrt(diag(V)[1:1])))
vx_res=c(Estimate=g_est[2],SE=g_se[2],
Lower=g_est[2]*exp(-1.96*sqrt(diag(V)[2:2])),
Upper=g_est[2]*exp(+1.96*sqrt(diag(V)[2:2])))
ry_res=c(Estimate=h_est[1],SE=h_se[1],
Lower=h_est[1]*exp(-1.96*sqrt(diag(V)[3:3])),
Upper=h_est[1]*exp(+1.96*sqrt(diag(V)[3:3])))
vy_res=c(Estimate=h_est[2],SE=h_se[2],
Lower=h_est[2]*exp(-1.96*sqrt(diag(V)[4:4])),
Upper=h_est[2]*exp(+1.96*sqrt(diag(V)[4:4])))
if (convergence.par==FALSE){convergence.parameters = NULL}else{
convergence.parameters=list(log_estimate=res$est,gradient=-res$gradient,log_var=V)
}
list(Number=count,Proportion=CEN,
beta_x=bx_res,beta_y=by_res,beta_xy=bxy_res,
alpha=a_res,delta=d_res,tau=tau_res,
scale_x=rx_res,shape_x=vx_res,scale_y=ry_res,shape_y=vy_res,
convergence=convergence_res,
convergence.parameters=convergence.parameters)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.