gwc: Calculate the gwc score between two vectors, using either a...

Description Usage Arguments Value Examples

Description

Calculate the gwc score between two vectors, using either a weighted spearman or pearson correlation

Usage

1
2
gwc(x1, p1, x2, p2, method.cor = c("pearson", "spearman"),
  nperm = 10000, truncate.p = 1e-16, ...)

Arguments

x1

numeric vector of effect sizes (e.g., fold change or t statitsics) for the first experiment

p1

numeric vector of p-values for each corresponding effect size for the first experiment

x2

numeric effect size (e.g., fold change or t statitsics) for the second experiment

p2

numeric vector of p-values for each corresponding effect size for the second experiment

method.cor

character string identifying if a pearson or spearman correlation should be used

nperm

numeric how many permutations should be done to determine

truncate.p

numeric Truncation value for extremely low p-values

...

Other passed down to internal functions

Value

numeric a vector of two values, the correlation and associated p-value.

Examples

1
2
3
4
5
6
7
8
data(Cleveland_small)
x <- molecularProfiles(Cleveland_small,"rna")[,1]
y <- molecularProfiles(Cleveland_small,"rna")[,2]
x_p <- rep(0.05, times=length(x))
y_p <- rep(0.05, times=length(y))
names(x_p) <- names(x)
names(y_p) <- names(y)
gwc(x,x_p,y,y_p, nperm=100)

CoreGx documentation built on Dec. 20, 2019, 1:08 a.m.

Related to gwc in CoreGx...