tests/testthat/test-covariateRegularization.R

library("testthat")

context("test-covariateRegularization.R")

test_that("Find covariate by name and number", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)
    tolerance <- 1E-4

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                  modelType = "pr")

    cyclopsFit <- fitCyclopsModel(dataPtr,
                          prior = createPrior("laplace",
                                        exclude = c("(Intercept)", "outcome2", "outcome3")),
                          control = createControl(noiseLevel = "silent"))

    # Shrinkage on treatment-effects
    expect_equivalent(coef(cyclopsFit)[4], 0.0)
    expect_equivalent(coef(cyclopsFit)[5], 0.0)

    dataPtr2 <- createCyclopsData(counts ~ outcome + treatment,
                                   modelType = "pr")

    cyclopsFit2 <- fitCyclopsModel(dataPtr2,
                           prior = createPrior("laplace",
                                         exclude = c(1:3)),
                           control = createControl(noiseLevel = "silent"))
    # Check c(i:j) notation
    expect_equal(coef(cyclopsFit), coef(cyclopsFit2))
})

test_that("Error when covariate not found", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)
    tolerance <- 1E-4

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                  modelType = "pr")

    expect_error(
        fitCyclopsModel(dataPtr,
                    prior = createPrior("laplace",
                                  exclude = c("BAD", "outcome2", "outcome3")),
                    control = createControl(noiseLevel = "silent")))

    dataPtr2 <- createCyclopsData(counts ~ outcome + treatment,
                                   modelType = "pr")

    expect_error(
        fitCyclopsModel(dataPtr2,
                    prior = createPrior("laplace",
                                  exclude = c(10,1:3)),
                    control = createControl(noiseLevel = "silent")))
})

test_that("Preclude profiling regularized coefficients", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)
    tolerance <- 1E-4

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                  modelType = "pr")

    cyclopsFit <- fitCyclopsModel(dataPtr,
                          prior = createPrior("laplace", exclude = "(Intercept)"),
                          control = createControl(noiseLevel = "silent"))

    expect_true(
        !is.null(confint(cyclopsFit, "(Intercept)")) # not regularized
    )
    expect_error(
        confint(cyclopsFit, "outcome2") # regularized
    )
})

test_that("Preclude intercept regularization by default", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)
    tolerance <- 1E-4

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                  modelType = "pr")

#     expect_error(fitCyclopsModel(dataPtr,
#                 prior = createPrior("laplace", 0.1)))

    c1 <- fitCyclopsModel(dataPtr,
                      forceNewObject = TRUE,
                      prior = createPrior("laplace", 0.1, forceIntercept = TRUE))

    c2 <- fitCyclopsModel(dataPtr,
                      forceNewObject = TRUE,
                      prior = createPrior("laplace", 0.1, exclude = "(Intercept)"))

    c3 <- fitCyclopsModel(dataPtr,
                      forceNewObject = TRUE,
                      prior = createPrior("laplace", 0.1, exclude = 1))

    expect_equal(coef(c2),
                 coef(c3))

    expect_less_than(coef(c1)[1],  # Intercept is regularized
                     coef(c2)[1])
})

test_that("Specify each prior independently", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                 modelType = "pr")

    prior <- createPrior(priorType = c("none", "laplace", "none", "laplace", "none"),
                         variance = c(0, 1, 0, 1, 1))

    cyclopsFit <- fitCyclopsModel(dataPtr, prior = prior)
    expect_equal(length(strsplit(cyclopsFit$prior_info, ' ')[[1]]), 5) # 5 different covariates

    expect_true(coef(cyclopsFit)[4] == 0)
    expect_true(coef(cyclopsFit)[5] != 0)
})


test_that("Mixture report should show full details of components", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                  modelType = "pr")
    cyclopsFit <- fitCyclopsModel(dataPtr,
                          prior = createPrior("laplace",
                                        exclude = c("(Intercept)", "outcome2", "outcome3")))
    expect_equal(length(strsplit(cyclopsFit$prior_info, ' ')[[1]]),
                 4) # 4 different prior assignments
})

test_that("Random-walk fusion prior", {
    counts <- c(18,17,15,20,10,20,25,13,12)
    outcome <- gl(3,1,9)
    treatment <- gl(3,3)

    dataPtr <- createCyclopsData(counts ~ outcome + treatment,
                                 modelType = "pr")

    cyclopsFit0 <- fitCyclopsModel(dataPtr,
                                   prior = createPrior("laplace",
                                                       1.0,
                                                       exclude = c("(Intercept)")),
                                   startingCoefficients = c(1,2,3,4,5))

    cyclopsFit1 <- fitCyclopsModel(dataPtr,
                                   prior = createPrior(c("laplace", "laplace"),
                                                       c(1.0, 1E20), # Effectively no fused regularization
                                                       exclude = c("(Intercept)"),
                                                       neighborhood = list(list("outcome2", c("outcome3")),
                                                                           list("outcome3", c("outcome2")))
                                   ),
                                   startingCoefficients = c(1,2,3,4,5))

    expect_equal(coef(cyclopsFit0), coef(cyclopsFit1))

    cyclopsFit2 <- fitCyclopsModel(dataPtr,
                                   prior = createPrior(c("laplace", "laplace"),
                                                       c(1.0, 0.1), # Strong fused regularization
                                                       exclude = c("(Intercept)"),
                                                       neighborhood = list(list("outcome2", c("outcome3")),
                                                                           list("outcome3", c("outcome2")))
                                   ),
                                   startingCoefficients = c(1,2,3,4,5))

    expect_equivalent(coef(cyclopsFit2)[2], coef(cyclopsFit2)[3]) # Have different names
})

Try the Cyclops package in your browser

Any scripts or data that you put into this service are public.

Cyclops documentation built on Sept. 23, 2018, 5:04 p.m.