View source: R/model_profile.R
| model_profile | R Documentation | 
This function calculates explanations on a dataset level set that explore model response as a function of selected variables.
The explanations can be calulated as Partial Dependence Profile or  Accumulated Local Dependence Profile.
Find information how to use this function here: https://ema.drwhy.ai/partialDependenceProfiles.html.
The variable_profile function is a copy of model_profile.
model_profile(
  explainer,
  variables = NULL,
  N = 100,
  ...,
  groups = NULL,
  k = NULL,
  center = TRUE,
  type = "partial"
)
variable_profile(
  explainer,
  variables = NULL,
  N = 100,
  ...,
  groups = NULL,
  k = NULL,
  center = TRUE,
  type = "partial"
)
single_variable(explainer, variable, type = "pdp", ...)
explainer | 
 a model to be explained, preprocessed by the   | 
variables | 
 character - names of variables to be explained  | 
N | 
 number of observations used for calculation of aggregated profiles. By default   | 
... | 
 other parameters that will be passed to   | 
groups | 
 a variable name that will be used for grouping.
By default   | 
k | 
 number of clusters for the hclust function (for clustered profiles)  | 
center | 
 shall profiles be centered before clustering  | 
type | 
 the type of variable profile. Either   | 
variable | 
 deprecated, use variables instead  | 
Underneath this function calls the partial_dependence or
accumulated_dependence functions from the ingredients package.
An object of the class model_profile.
It's a data frame with calculated average model responses.
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")
explainer_glm <- explain(titanic_glm_model, data = titanic_imputed)
model_profile_glm_fare <- model_profile(explainer_glm, "fare")
plot(model_profile_glm_fare)
 
library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
                               probability = TRUE)
explainer_ranger  <- explain(titanic_ranger_model, data = titanic_imputed)
model_profile_ranger <- model_profile(explainer_ranger)
plot(model_profile_ranger, geom = "profiles")
model_profile_ranger_1 <- model_profile(explainer_ranger, type = "partial",
                                        variables = c("age", "fare"))
plot(model_profile_ranger_1 , variables = c("age", "fare"), geom = "points")
model_profile_ranger_2  <- model_profile(explainer_ranger, type = "partial", k = 3)
plot(model_profile_ranger_2 , geom = "profiles")
model_profile_ranger_3  <- model_profile(explainer_ranger, type = "partial", groups = "gender")
plot(model_profile_ranger_3 , geom = "profiles")
model_profile_ranger_4  <- model_profile(explainer_ranger, type = "accumulated")
plot(model_profile_ranger_4 , geom = "profiles")
# Multiple profiles
model_profile_ranger_fare <- model_profile(explainer_ranger, "fare")
plot(model_profile_ranger_fare, model_profile_glm_fare)
 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.