predict_profile: Instance Level Profile as Ceteris Paribus

View source: R/predict_profile.R

predict_profileR Documentation

Instance Level Profile as Ceteris Paribus

Description

This function calculated individual profiles aka Ceteris Paribus Profiles. From DALEX version 1.0 this function calls the ceteris_paribus from the ingredients package. Find information how to use this function here: https://ema.drwhy.ai/ceterisParibus.html.

Usage

predict_profile(
  explainer,
  new_observation,
  variables = NULL,
  ...,
  type = "ceteris_paribus",
  variable_splits_type = "uniform"
)

individual_profile(
  explainer,
  new_observation,
  variables = NULL,
  ...,
  type = "ceteris_paribus",
  variable_splits_type = "uniform"
)

Arguments

explainer

a model to be explained, preprocessed by the explain function

new_observation

a new observation for which predictions need to be explained

variables

character - names of variables to be explained

...

other parameters

type

character, currently only the ceteris_paribus is implemented

variable_splits_type

how variable grids shall be calculated? Use "quantiles" (default) for percentiles or "uniform" to get uniform grid of points. Will be passed to 'ingredients'.

Value

An object of the class ceteris_paribus_explainer. It's a data frame with calculated average response.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

new_dragon <- data.frame(year_of_birth = 200,
     height = 80,
     weight = 12.5,
     scars = 0,
     number_of_lost_teeth  = 5)

dragon_lm_model4 <- lm(life_length ~ year_of_birth + height +
                                     weight + scars + number_of_lost_teeth,
                       data = dragons)
dragon_lm_explainer4 <- explain(dragon_lm_model4, data = dragons, y = dragons$year_of_birth,
                                label = "model_4v")
dragon_lm_predict4 <- predict_profile(dragon_lm_explainer4,
                new_observation = new_dragon,
                variables = c("year_of_birth", "height", "scars"))
head(dragon_lm_predict4)
plot(dragon_lm_predict4,
    variables = c("year_of_birth", "height", "scars"))


library("ranger")
dragon_ranger_model4 <- ranger(life_length ~ year_of_birth + height +
                                               weight + scars + number_of_lost_teeth,
                                 data = dragons, num.trees = 50)
dragon_ranger_explainer4 <- explain(dragon_ranger_model4, data = dragons, y = dragons$year_of_birth,
                                label = "model_ranger")
dragon_ranger_predict4 <- predict_profile(dragon_ranger_explainer4,
                                           new_observation = new_dragon,
                                           variables = c("year_of_birth", "height", "scars"))
head(dragon_ranger_predict4)
plot(dragon_ranger_predict4,
    variables = c("year_of_birth", "height", "scars"))
 


DALEX documentation built on June 16, 2022, 1:06 a.m.

Related to predict_profile in DALEX...