Description Usage Arguments Details Value Author(s) References Examples
Function to calculate the Natural Outlier Factor (NOF) as an outlier score for observations. Suggested by Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015)
1 | NOF(dataset)
|
dataset |
The dataset for which observations have a NOF score returned |
NOF computes the nearest and reverse nearest neighborhood for observations, based on the natural neighborhood algorithm. Density is compared between observations and their neighbors. A kd-tree is used for kNN computation, using the kNN() function from the 'dbscan' package
nb |
A vector of in-degrees for observations |
max_nb |
Maximum in-degree observations in nb vector. Used as k-parameter in outlier detection of NOF |
r |
The natural neighbor eigenvalue |
NOF |
A vector of Natural Outlier Factor scores. The greater the NOF, the greater the outlierness |
Jacob H. Madsen
Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015). A non-parameter outlier detection algorithm based on Natural Neighbor. Knowledge-Based Systems. pp. 71-77. DOI: 10.1016/j.knosys.2015.10.014
1 2 3 4 5 6 7 8 9 10 11 12 |
[1] "r is now: 2"
[1] "r is now: 3"
[1] "r is now: 4"
[1] "r is now: 5"
42 127 144 64 55 113 28 90
1.4568285 1.4551820 1.4432004 1.4098590 1.3595976 1.3496025 1.2933804 1.2905440
103 49 121 125 50 54 16 92
1.2851906 1.2559298 1.2285780 1.2245882 1.2014043 1.1989356 1.1833303 1.1804482
83 100 107 79 60 40 20 23
1.1689806 1.1686685 1.1670581 1.1511226 1.1496940 1.1482661 1.1434154 1.1405675
128 11 31 130 134 14 22 126
1.1299069 1.1257786 1.1228356 1.1197920 1.1167399 1.1123065 1.1069851 1.1054310
117 8 18 80 46 138 99 1
1.1050226 1.1031811 1.1005091 1.0985946 1.0957836 1.0826964 1.0820748 1.0776876
70 110 4 15 47 65 97 98
1.0759488 1.0673490 1.0671666 1.0662943 1.0660229 1.0638617 1.0618035 1.0542436
119 52 61 48 116 95 124 7
1.0528559 1.0523064 1.0462963 1.0462287 1.0458299 1.0454587 1.0443777 1.0353810
13 118 84 45 108 131 58 81
1.0341143 1.0323089 1.0321768 1.0302485 1.0298309 1.0278494 1.0262681 1.0221270
75 33 2 132 51 30 3 37
1.0203894 1.0168846 1.0108023 1.0035592 1.0034935 1.0026185 0.9987692 0.9971942
141 94 82 140 67 112 150 6
0.9938880 0.9905895 0.9896148 0.9872519 0.9847001 0.9792127 0.9790012 0.9759951
12 114 148 135 123 133 102 143
0.9759724 0.9742069 0.9703938 0.9678542 0.9666205 0.9649938 0.9536860 0.9536860
115 34 53 122 139 111 35 69
0.9536113 0.9516014 0.9515444 0.9431567 0.9403054 0.9388869 0.9369747 0.9364066
147 9 149 24 59 43 57 19
0.9347949 0.9329888 0.9328275 0.9324095 0.9273387 0.9247231 0.9244330 0.9232432
88 105 39 120 32 71 77 106
0.9191701 0.9178905 0.9175899 0.9166021 0.9140269 0.9092829 0.9075090 0.9064312
5 27 109 72 78 25 129 101
0.9037674 0.9013173 0.9005028 0.8992171 0.8965279 0.8922238 0.8902182 0.8900310
145 85 66 26 68 17 93 87
0.8872306 0.8864447 0.8829103 0.8822318 0.8819857 0.8797700 0.8767640 0.8751420
41 136 56 73 89 96 63 146
0.8739759 0.8675204 0.8623359 0.8596633 0.8523845 0.8520418 0.8509993 0.8462226
29 74 62 76 91 44 21 38
0.8440434 0.8424309 0.8375984 0.8330724 0.8193339 0.8027794 0.7874575 0.7865786
86 104 10 137 142 36
0.7811683 0.7773199 0.7687574 0.7658661 0.7514867 0.7202985
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.