Description Usage Arguments Details Value Author(s) References Examples
Function to to calculate the RKOF score for observations as suggested by Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011)
1 |
dataset |
The dataset for which observations have an RKOF score returned |
k |
The number of nearest neighbors to compare density estimation with |
C |
Multiplication parameter for k-distance of neighboring observations. Act as bandwidth increaser. Default is 1 such that k-distance is used for the gaussian kernel |
alpha |
Sensivity parameter for k-distance/bandwidth. Small alpha creates small variance in RKOF and vice versa. Default is 1 |
sigma2 |
Variance parameter for weighting of neighboring observations |
RKOF computes a kernel density estimation by comparing density estimation to the density of neighboring observations. A gaussian kernel is used for density estimation, given a bandwidth with k-distance. K-distance can be influenced with the parameters C and alpha. A kd-tree is used for kNN computation, using the kNN() function from the 'dbscan' package. The RKOF function is useful for outlier detection in clustering and other multidimensional domains
A vector of RKOF scores for observations. The greater the RKOF score, the greater outlierness
Jacob H. Madsen
Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011). RKOF: Robust Kernel-Based Local Outlier Detection. Pacific-Asia Conference on Knowledge Discovery and Data Mining: Advances in Knowledge Discovery and Data Mining. pp. 270-283. DOI: 10.1007/978-3-642-20847-8_23
1 2 3 4 5 6 7 8 9 10 11 12 | # Create dataset
X <- iris[,1:4]
# Find outliers by setting an optional k
outlier_score <- RKOF(dataset=X, k = 10, C = 1, alpha = 1, sigma2 = 1)
# Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)
# Inspect the distribution of outlier scores
hist(outlier_score)
|
42 23 107 16 99 61 25
20.9333707 7.4803071 7.4337297 4.2156385 3.7606731 3.5099076 3.4677519
14 94 15 58 110 44 45
3.3511778 3.0964169 3.0380271 2.9927734 2.9165486 2.4841597 2.4062123
33 132 34 118 115 63 135
2.3947587 2.3866664 2.2960100 2.2860929 2.2699917 2.2671660 2.2501356
24 109 37 60 69 21 119
2.2397256 2.2301521 2.2017995 2.1639492 2.1555626 2.1472660 2.0711909
9 130 65 80 19 88 85
2.0597701 2.0161673 1.9891042 1.9824328 1.9757990 1.8843072 1.8802384
101 32 36 120 126 39 7
1.8012098 1.7902986 1.7407341 1.6874210 1.6388187 1.6131324 1.6050853
17 86 136 149 123 43 51
1.5556259 1.5462244 1.5344901 1.5174920 1.4926101 1.4462593 1.4299705
26 38 72 142 67 6 91
1.4237754 1.3941024 1.3842360 1.3641326 1.3621389 1.3601984 1.3457786
108 27 47 12 122 54 114
1.3356308 1.3303128 1.3022165 1.2978009 1.2969380 1.2951479 1.2942641
20 53 103 137 131 82 106
1.2846954 1.2834857 1.2695735 1.2597446 1.2588270 1.2337204 1.2239498
49 22 57 78 68 71 74
1.2239461 1.2153137 1.2107051 1.1837874 1.1546670 1.1468838 1.1253193
147 62 81 134 77 111 116
1.1195289 1.1189868 1.1187405 1.1031833 1.0960186 1.0850111 1.0754110
56 73 41 3 146 133 145
1.0739931 1.0721847 1.0604453 1.0523797 1.0418085 1.0377909 1.0374178
138 55 75 112 11 104 84
1.0307016 1.0297730 1.0290214 1.0258033 1.0234543 1.0225895 1.0170707
105 46 102 143 98 125 50
1.0106365 1.0091586 1.0077600 1.0077600 1.0032409 1.0032110 0.9999347
89 52 5 66 79 70 83
0.9882766 0.9826802 0.9773547 0.9750188 0.9749555 0.9747913 0.9705611
150 140 13 90 48 29 64
0.9684244 0.9683627 0.9604432 0.9586856 0.9585964 0.9562693 0.9536025
113 30 144 28 96 129 59
0.9518954 0.9510152 0.9481561 0.9473663 0.9468100 0.9435002 0.9431162
117 139 4 10 2 127 124
0.9421072 0.9406396 0.9402717 0.9222534 0.9173107 0.9171001 0.9118251
148 8 92 141 87 93 76
0.9112023 0.9088143 0.9044098 0.9043231 0.8994932 0.8939278 0.8929194
31 95 128 121 18 35 40
0.8886043 0.8746669 0.8739067 0.8714953 0.8644323 0.8584679 0.8284067
97 1 100
0.8256756 0.7918447 0.7866364
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.