Nothing
Code
testUniformity(simulationOutput, plot = FALSE)
Output
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D = 0.035577, p-value = 0.9619
alternative hypothesis: two-sided
Code
testUniformity(simulationOutput, plot = FALSE, alternative = "less")
Output
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D^- = 0.035577, p-value = 0.6027
alternative hypothesis: the CDF of x lies below the null hypothesis
Code
testUniformity(simulationOutput, plot = FALSE, alternative = "greater")
Output
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D^+ = 0.034418, p-value = 0.6226
alternative hypothesis: the CDF of x lies above the null hypothesis
Code
testDispersion(simulationOutput, plot = FALSE)
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 1.2578, p-value = 0.096
alternative hypothesis: two.sided
Code
testDispersion(simulationOutput, plot = FALSE, alternative = "less")
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 1.2578, p-value = 0.952
alternative hypothesis: less
Code
testDispersion(simulationOutput, plot = FALSE, alternative = "greater")
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 1.2578, p-value = 0.048
alternative hypothesis: greater
Code
testDispersion(simulationOutput, plot = FALSE, alternative = "two.sided")
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 1.2578, p-value = 0.096
alternative hypothesis: two.sided
Code
testResiduals(simulationOutput, plot = FALSE)
Output
$uniformity
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D = 0.035577, p-value = 0.9619
alternative hypothesis: two-sided
$dispersion
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 1.2578, p-value = 0.096
alternative hypothesis: two.sided
$outliers
DHARMa bootstrapped outlier test
data: simulationOutput
outliers at both margin(s) = 1, observations = 200, p-value = 0.82
alternative hypothesis: two.sided
percent confidence interval:
0.000000 0.012625
sample estimates:
outlier frequency (expected: 0.0028 )
0.005
Code
testZeroInflation(simulationOutput, plot = FALSE)
Output
DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model
data: simulationOutput
ratioObsSim = 1.0565, p-value = 0.552
alternative hypothesis: two.sided
Code
testZeroInflation(simulationOutput, plot = FALSE, alternative = "less")
Output
DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model
data: simulationOutput
ratioObsSim = 1.0565, p-value = 0.784
alternative hypothesis: less
Code
testGeneric(simulationOutput, summary = countOnes, plot = FALSE)
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = 0.97457, p-value = 0.808
alternative hypothesis: two.sided
Code
testGeneric(simulationOutput, summary = countOnes, plot = FALSE, alternative = "less")
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = 0.97457, p-value = 0.404
alternative hypothesis: less
Code
testGeneric(simulationOutput, summary = means, plot = FALSE)
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = 1.0077, p-value = 0.944
alternative hypothesis: two.sided
Code
testGeneric(simulationOutput, summary = spread, plot = FALSE)
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = 1.0834, p-value = 0.208
alternative hypothesis: two.sided
Code
testUniformity(simulationOutput, plot = FALSE)
Output
Exact one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D = 0.22547, p-value = 0.613
alternative hypothesis: two-sided
Code
testUniformity(simulationOutput, plot = FALSE, alternative = "less")
Output
Exact one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D^- = 0.16279, p-value = 0.5338
alternative hypothesis: the CDF of x lies below the null hypothesis
Code
testUniformity(simulationOutput, plot = FALSE, alternative = "greater")
Output
Exact one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D^+ = 0.22547, p-value = 0.315
alternative hypothesis: the CDF of x lies above the null hypothesis
Code
testDispersion(simulationOutput, plot = FALSE)
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 2.1091, p-value = 0.048
alternative hypothesis: two.sided
Code
testDispersion(simulationOutput, plot = FALSE, alternative = "less")
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 2.1091, p-value = 0.976
alternative hypothesis: less
Code
testDispersion(simulationOutput, plot = FALSE, alternative = "greater")
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 2.1091, p-value = 0.024
alternative hypothesis: greater
Code
testDispersion(simulationOutput, plot = FALSE, alternative = "two.sided")
Output
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 2.1091, p-value = 0.048
alternative hypothesis: two.sided
Code
testResiduals(simulationOutput, plot = FALSE)
Output
$uniformity
Exact one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals
D = 0.22547, p-value = 0.613
alternative hypothesis: two-sided
$dispersion
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput
dispersion = 2.1091, p-value = 0.048
alternative hypothesis: two.sided
$outliers
DHARMa bootstrapped outlier test
data: simulationOutput
outliers at both margin(s) = 20, observations = 200, p-value = 0.1
alternative hypothesis: two.sided
percent confidence interval:
0.0 0.1
sample estimates:
outlier frequency (expected: 0.005 )
0.1
Code
testZeroInflation(simulationOutput, plot = FALSE)
Output
DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model
data: simulationOutput
ratioObsSim = NaN, p-value = 1
alternative hypothesis: two.sided
Code
testZeroInflation(simulationOutput, plot = FALSE, alternative = "less")
Output
DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model
data: simulationOutput
ratioObsSim = NaN, p-value = 1
alternative hypothesis: less
Code
testGeneric(simulationOutput, summary = countOnes, plot = FALSE)
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = NaN, p-value = 1
alternative hypothesis: two.sided
Code
testGeneric(simulationOutput, summary = countOnes, plot = FALSE, alternative = "less")
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = NaN, p-value = 1
alternative hypothesis: less
Code
testGeneric(simulationOutput, summary = means, plot = FALSE)
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = 1.0077, p-value = 0.944
alternative hypothesis: two.sided
Code
testGeneric(simulationOutput, summary = spread, plot = FALSE)
Output
DHARMa generic simulation test
data: simulationOutput
ratioObsSim = 1.4725, p-value = 0.04
alternative hypothesis: two.sided
Code
testDispersion(simulationOutput, plot = FALSE)
Output
DHARMa nonparametric dispersion test via mean deviance residual fitted
vs. simulated-refitted
data: simulationOutput
dispersion = 1.1231, p-value = 0.248
alternative hypothesis: two.sided
Code
testSpatialAutocorrelation(simulationOutput, x = testData$x, y = testData$y,
plot = FALSE)
Output
DHARMa Moran's I test for distance-based autocorrelation
data: simulationOutput
observed = -0.0166319, expected = -0.0050251, sd = 0.0112750, p-value =
0.3033
alternative hypothesis: Distance-based autocorrelation
Code
testSpatialAutocorrelation(simulationOutput, x = testData$x, y = testData$y,
plot = FALSE, alternative = "two.sided")
Output
DHARMa Moran's I test for distance-based autocorrelation
data: simulationOutput
observed = -0.0166319, expected = -0.0050251, sd = 0.0112750, p-value =
0.3033
alternative hypothesis: Distance-based autocorrelation
Code
testSpatialAutocorrelation(simulationOutput, distMat = dM, plot = FALSE)
Output
DHARMa Moran's I test for distance-based autocorrelation
data: simulationOutput
observed = -0.0166319, expected = -0.0050251, sd = 0.0112750, p-value =
0.3033
alternative hypothesis: Distance-based autocorrelation
Code
testSpatialAutocorrelation(simulationOutput, distMat = dM, plot = FALSE,
alternative = "two.sided")
Output
DHARMa Moran's I test for distance-based autocorrelation
data: simulationOutput
observed = -0.0166319, expected = -0.0050251, sd = 0.0112750, p-value =
0.3033
alternative hypothesis: Distance-based autocorrelation
Code
testSpatialAutocorrelation(simulationOutput, plot = FALSE, x = testData$x[1:10],
y = testData$y[1:9])
Condition
Warning in `cbind()`:
number of rows of result is not a multiple of vector length (arg 2)
Error in `testSpatialAutocorrelation()`:
! Dimensions of x / y coordinates don't match the dimension of the residuals.
Code
testSpatialAutocorrelation(simulationOutput[1:10], plot = FALSE, x = testData$x[
1:10], y = testData$y[1:10])
Condition
Error in `ensureDHARMa()`:
! wrong argument to function, simulationOutput must be a DHARMa object or a numeric vector of quantile residuals!
Code
testSpatialAutocorrelation(simulationOutput, distMat = dM, plot = FALSE, x = testData$
x)
Message
Both coordinates and distMat provided, calculations will be done based on the distance matrix, coordinates will only be used for plotting.
Output
DHARMa Moran's I test for distance-based autocorrelation
data: simulationOutput
observed = -0.0166319, expected = -0.0050251, sd = 0.0112750, p-value =
0.3033
alternative hypothesis: Distance-based autocorrelation
Code
testSpatialAutocorrelation(simulationOutput, distMat = dM, plot = FALSE, y = testData$
y)
Message
Both coordinates and distMat provided, calculations will be done based on the distance matrix, coordinates will only be used for plotting.
Output
DHARMa Moran's I test for distance-based autocorrelation
data: simulationOutput
observed = -0.0166319, expected = -0.0050251, sd = 0.0112750, p-value =
0.3033
alternative hypothesis: Distance-based autocorrelation
Code
testTemporalAutocorrelation(simulationOutput, plot = FALSE, time = testData$
time)
Output
Durbin-Watson test
data: simulationOutput$scaledResiduals ~ 1
DW = 1.9703, p-value = 0.833
alternative hypothesis: true autocorrelation is not 0
Code
testTemporalAutocorrelation(simulationOutput, plot = FALSE, time = testData$
time, alternative = "greater")
Output
Durbin-Watson test
data: simulationOutput$scaledResiduals ~ 1
DW = 1.9703, p-value = 0.4165
alternative hypothesis: true autocorrelation is greater than 0
Code
restest
Output
DHARMa Moran's I test for phylogenetic autocorrelation
data: res
observed = 0.851667, expected = -0.016949, sd = 0.088733, p-value <
2.2e-16
alternative hypothesis: Phylogenetic autocorrelation
Code
restest2
Output
DHARMa Moran's I test for phylogenetic autocorrelation
data: res2
observed = 0.047474, expected = -0.016949, sd = 0.088260, p-value =
0.4654
alternative hypothesis: Phylogenetic autocorrelation
Code
testOutliers(simulationOutput, plot = F, margin = "lower")
Output
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput
outliers at lower margin(s) = 4, observations = 1000, p-value = 0.8037
alternative hypothesis: true probability of success is not equal to 0.003984064
95 percent confidence interval:
0.001090908 0.010209665
sample estimates:
frequency of outliers (expected: 0.00398406374501992 )
0.004
Code
testOutliers(simulationOutput, plot = F, alternative = "two.sided", margin = "lower")
Output
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput
outliers at lower margin(s) = 4, observations = 1000, p-value = 0.8037
alternative hypothesis: true probability of success is not equal to 0.003984064
95 percent confidence interval:
0.001090908 0.010209665
sample estimates:
frequency of outliers (expected: 0.00398406374501992 )
0.004
Code
testOutliers(simulationOutput, plot = F, margin = "upper")
Output
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput
outliers at upper margin(s) = 4, observations = 1000, p-value = 0.8037
alternative hypothesis: true probability of success is not equal to 0.003984064
95 percent confidence interval:
0.001090908 0.010209665
sample estimates:
frequency of outliers (expected: 0.00398406374501992 )
0.004
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.