# eul2rot: Construct a rotation matrix on SO(3) from the Euler angles. In Directional: A Collection of Functions for Directional Data Analysis

 Rotation matrix on SO(3) from three Euler angles R Documentation

## Construct a rotation matrix on SO(3) from the Euler angles.

### Description

It forms a rotation matrix X on SO(3) by using three Euler angles (\theta_{12}, \theta_{13}, \theta_{23}), where X is defined as X=R_z(\theta_{12}) \times R_y(\theta_{13}) \times R_x( \theta_{23} ). Here R_x (\theta_{23}) means a rotation of \theta_{23} radians about the x axis.

### Usage

eul2rot(theta.12, theta.23, theta.13)


### Arguments

 theta.12 An Euler angle, a number which must lie in (-\pi, \pi). theta.23 An Euler angle, a number which must lie in (-\pi, \pi). theta.13 An Euler angle, a number which must lie in (-\pi/2, \pi/2).

### Details

Given three euler angles a rotation matrix X on SO(3) is formed using the transformation according to Green and Mardia (2006) which is defined above.

### Value

A roation matrix.

### Author(s)

Anamul Sajib <sajibstat@du.ac.bd>.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

### References

Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applications in proteins bioinformatics. Biometrika, 93(2):235–254.

rot2eul 

### Examples

# three euler angles

theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )

theta.12 ; theta.23 ; theta.13

X <- eul2rot(theta.12, theta.23, theta.13)
X  # A rotation matrix
det(X)

e <- rot2eul(X)\$v1

theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]

theta.12 ; theta.23 ; theta.13


Directional documentation built on Oct. 12, 2023, 1:07 a.m.