Analysis of variance for (hyper-)spherical data

Description

Analysis of variance for (hyper-)spherical data.

Usage

1
2
3
4
5
6
7
hcf.aov(x, ina, fc = TRUE)

lr.aov(x, ina)

embed.aov(x, ina)

het.aov(x, ina)

Arguments

x

The data in Euclidean coordinates, i.e. unit vectors.

ina

A numerical variable or a factor indicating the group of each vector.

fc

A boolean that indicates whether a corrected F test should be used or not.

Details

The high concentration (hcf.aov), log-likelihood ratio (lr.aov), embedding approach (embed.aov) or the non equal concentration parameters approach (het.aov) is used.

Value

A vector including:

test

The test statistic value.

p-value

The p-value of the F test.

kappa

The common concentration parameter kappa based on all the data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@yahoo.gr> and Giorgos Athineou <athineou@csd.uoc.gr>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

lr.aov, embed.aov, het.aov, spherconc.test, conc.test

Examples

1
2
3
4
5
6
7
x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:3, each = 20)
hcf.aov(x, ina)
hcf.aov(x, ina, fc = FALSE)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.