Nothing
#' Generate Species Tables
#'
#' Generate a list of tables for species counts from the input clusterised object.
#'
#' @param clusterised_object An object created by the clusterise_sites function.
#' @param min_individuals The minimum number of individuals in each table
#' @param min_species The minimum number of species in each table.
#'
#' @return A list of species counts tables.
#' @export
#'
#' @examples # generate species count tables with a minimum of 30 individuals from 5 species
#'Colombia_Caquetá_dataframe <- subset(Colombia, stateProvince == "Caquetá")
#'
#'clusterised_Caquetá <- clusterise_sites(dataframe = Colombia_Caquetá_dataframe,
#' cluster_min_length = 30,
#' group_radius = 20000
#')
#'
#'Spec_Tables_Caquetá <- generate_spec_tables(
#'
#' clusterised_object = clusterised_Caquetá,
#' min_individuals = 30,
#' min_species = 5
#'
#')
#'
#'print(Spec_Tables_Caquetá$`5.2016-03-22`)
#'print(Spec_Tables_Caquetá$`5.2016-03-29`)
#'print(Spec_Tables_Caquetá$`5.2016-03-30`)
#'print(Spec_Tables_Caquetá$`5.2016-04-13`)
generate_spec_tables <- function(
clusterised_object,
min_individuals = 0,
min_species = 0
){
recombined_dataframe <- do.call(rbind, clusterised_object[[1]])
split_dataframe <- split(recombined_dataframe, list(recombined_dataframe$site_group, recombined_dataframe$date))
species_tables <- lapply(split_dataframe, function(df) table(df$scientificName))
NIndividuals <- numeric()
for(i in 1:length(species_tables)){
NIndividuals[i] <- sum(species_tables[[i]])
}
species_tables <- species_tables[NIndividuals > min_individuals]
NSpecies <- numeric()
for(i in 1:length(species_tables)){
NSpecies[i] <- base::nrow(species_tables[[i]])
}
species_tables <- species_tables[NSpecies > min_species]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.