Nothing
#' One-sample Kolmogorov-Smirnov goodness-of-fit test
#'
#' Performs the one-sample Kolmogorov-Smirnov test for a specified theoretical distribution.
#'
#' @param x Numeric vector of observations.
#' @param dist Character string specifying the distribution to test against.
#' One of \code{"norm"}, \code{"exp"}, \code{"unif"}, \code{"lnorm"}, \code{"weibull"},
#' \code{"gamma"}, \code{"t"}, or \code{"chisq"}.
#' @param ... Additional parameters passed to the distribution’s cumulative distribution function (CDF).
#' For example, \code{mean} and \code{sd} for the normal distribution.
#' @param eps Numeric lower and upper bound for tail probabilities to avoid numerical issues (default: \code{1e-15}).
#'
#' @return An object of class \code{"htest"} containing the test statistic, p-value, method description, and data name.
#'
#' @details
#' The test compares the empirical distribution function of \code{x} with the cumulative distribution function
#' of a specified theoretical distribution using the Kolmogorov-Smirnov statistic.
#' For large sample sizes, a p-value approximation based on the asymptotic distribution is used.
#'
#' A correction is applied when sample size exceeds 100, adjusting the test statistic to approximate a fixed sample size.
#' For very small or very large statistics, piecewise polynomial approximations are used to compute the p-value.
#'
#' @examples
#' set.seed(123)
#' x <- rnorm(1000, mean = 5, sd = 2)
#' KSgof2(x, dist = "norm", mean = 5, sd = 2)
#'
#' y <- rexp(500, rate = 0.5)
#' KSgof2(y, dist = "exp", rate = 0.5)
#'
#' u <- runif(300, min = 0, max = 10)
#' KSgof2(u, dist = "unif", min = 0, max = 10)
#'
#' @export
KSgof2 <- function(x,
dist = c("norm", "exp", "unif", "lnorm", "weibull", "gamma", "t", "chisq"),
...,
eps = 1e-15) {
dist <- match.arg(dist)
DNAME <- deparse(substitute(x))
x <- na.omit(x)
n <- length(x)
if (n < 1) stop("At least one observation is required.")
pfuns <- list(
norm = function(...) function(u) pnorm((u - list(...)[["mean"]]) / list(...)[["sd"]]),
exp = function(...) function(u) pexp(u, ...),
unif = function(...) function(u) punif(u, ...),
lnorm = function(...) function(u) plnorm(u, ...),
weibull = function(...) function(u) pweibull(u, ...),
gamma = function(...) function(u) pgamma(u, ...),
t = function(...) function(u) pt(u, ...),
chisq = function(...) function(u) pchisq(u, ...)
)
pfun <- pfuns[[dist]](...)
x_s <- sort(x)
p <- pfun(x_s)
p[p < eps] <- eps
p[p > 1 - eps] <- 1 - eps
i <- seq_len(n)
Dplus <- max(i/n - p)
Dminus <- max(p - (i - 1)/n)
K <- max(Dplus, Dminus)
if (n <= 100) {
Kd <- K; nd <- n
} else {
Kd <- K * (n/100)^0.49; nd <- 100
}
pvalue <- exp(-7.01256 * Kd^2 * (nd + 2.78019) +
2.99587 * Kd * sqrt(nd + 2.78019) -
0.122119 + 0.974598/sqrt(nd) + 1.67997/nd)
if (pvalue > 0.1) {
KK <- (sqrt(n) - 0.01 + 0.85/sqrt(n)) * K
pvalue <- if (KK <= 0.302) 1
else if (KK <= 0.5) 2.76773 - 19.828315*KK + 80.709644*KK^2 -
138.55152*KK^3 + 81.218052*KK^4
else if (KK <= 0.9) -4.901232 + 40.662806*KK - 97.490286*KK^2 +
94.029866*KK^3 - 32.355711*KK^4
else if (KK <= 1.31) 6.198765 - 19.558097*KK + 23.186922*KK^2 -
12.234627*KK^3 + 2.423045*KK^4
else 0
}
RVAL <- list(
statistic = c(D = (if (exists("KK")) KK else K)),
p.value = pvalue,
method = paste("Kolmogorov-Smirnov gof test for", dist, "distribution"),
data.name = DNAME
)
class(RVAL) <- "htest"
RVAL
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.