Nothing
#' @title Dimension Stability Statistics from \code{\link[EGAnet]{bootEGA}}
#'
#' @description Based on the \code{\link[EGAnet]{bootEGA}} results,
#' this function computes the stability of dimensions. Stability is
#' computed by assessing the proportion of times the
#' original dimension is exactly replicated in across bootstrap samples
#'
#' @param bootega.obj A \code{\link[EGAnet]{bootEGA}} object
#'
#' @param IS.plot Boolean (length = 1).
#' Should the plot be produced for \code{item.replication}?
#' Defaults to \code{TRUE}
#'
#' @param structure Numeric (length = number of variables).
#' A theoretical or pre-defined structure.
#' Defaults to \code{NULL} or the empirical \code{\link[EGAnet]{EGA}}
#' result in the \code{bootega.obj}
#'
#' @param ... Additional arguments.
#' Used for deprecated arguments from previous versions of \code{\link[EGAnet]{itemStability}}
#'
#' @return Returns a list containing:
#'
#' \item{dimension.stability}{A list containing:
#'
#' \itemize{
#'
#' \item \code{structural.consistency} --- The proportion of times that
#' each empirical \code{\link[EGAnet]{EGA}} dimension \emph{exactly}
#' replicates across the \code{\link[EGAnet]{bootEGA}} samples
#'
#' \item \code{average.item.stability} --- The average item stability in
#' each empirical \code{\link[EGAnet]{EGA}} dimension
#'
#' }
#'
#' }
#'
#' \item{item.stability}{Results from \code{\link[EGAnet]{itemStability}}}
#'
#'
#' @examples
#' # Load data
#' wmt <- wmt2[,7:24]
#'
#' \dontrun{
#' # Estimate bootstrap EGA
#' boot.wmt <- bootEGA(
#' data = wmt, iter = 500,
#' type = "parametric", ncores = 2
#' )}
#'
#' # Estimate stability statistics
#' dimensionStability(boot.wmt)
#'
#' @references
#' \strong{Original implementation of bootEGA} \cr
#' Christensen, A. P., & Golino, H. (2021).
#' Estimating the stability of the number of factors via Bootstrap Exploratory Graph Analysis: A tutorial.
#' \emph{Psych}, \emph{3}(3), 479-500.
#'
#' \strong{Conceptual introduction} \cr
#' Christensen, A. P., Golino, H., & Silvia, P. J. (2020).
#' A psychometric network perspective on the validity and validation of personality trait questionnaires.
#' \emph{European Journal of Personality}, \emph{34}(6), 1095-1108.
#'
#' @author Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
#'
#' @export
#'
# Dimension Stability function ----
# Updated 24.07.2023
dimensionStability <- function(bootega.obj, IS.plot = TRUE, structure = NULL, ...)
{
# Compute item stability (all error checks occur in `itemStability`)
item_stability <- itemStability(bootega.obj, IS.plot, structure, ...)
# Check for hierarchical EGA
if("lower_order" %in% names(item_stability)){
# Set up results list
results <- list(
lower_order = dimensionStability_core(item_stability$lower_order),
higher_order = dimensionStability_core(item_stability$higher_order),
item.stability = item_stability # redundant but cheaper print
)
}else{ # Otherwise, just run core
results <- dimensionStability_core(item_stability)
}
# Ensure class (needed for `hierEGA` S3)
class(results) <- "dimensionStability"
# Return results
return(results)
}
#' @exportS3Method
# S3 Print Method ----
# Updated 24.07.2023
print.dimensionStability <- function(x, ...)
{
# First, print item stability
print(x$item.stability)
# Add breakspace
cat("\n----\n\n")
# Print structural consistency
cat("Structural Consistency:\n\n")
# Then, branch for `hierEGA`
if("lower_order" %in% names(x)){
# Print level
cat(
styletext(
text = styletext(
text = "Lower Order\n\n",
defaults = "underline"
),
defaults = "bold"
)
)
# Print lower order
print(x$lower_order$dimension.stability$structural.consistency)
# Print level
cat(
styletext(
text = styletext(
text = "\n\nHigher Order\n\n",
defaults = "underline"
),
defaults = "bold"
)
)
# Print higher order
print(x$higher_order$dimension.stability$structural.consistency)
}else{
print(x$dimension.stability$structural.consistency)
}
}
#' @exportS3Method
# S3 Summary Method ----
# Updated 12.07.2023
summary.dimensionStability <- function(object, ...)
{
print(object, ...) # same as print
}
#' @noRd
# Dimension stability core ----
# Main function -- separated to handle `hierEGA`
# Updated 24.07.2023
dimensionStability_core <- function(item_stability_object)
{
# Obtain structure (convert to string for NAs)
structure <- paste(item_stability_object$membership$structure)
# Get unique structure
unique_structure <- unique(structure)
# Order unique structure
unique_structure <- unique_structure[order(unique_structure)]
# Compute dimension stability
dimension_stability <- nvapply(
unique_structure, function(community){
# Across items in community, compute stability for dimension
return(
mean(
lvapply(
as.data.frame(
t(item_stability_object$membership$bootstrap[,structure == community])
), function(row){all(row == community, na.rm = TRUE)}
), na.rm = TRUE
)
)
}
)
# Compute average item stability
average_item_stability <- nvapply(
unique_structure, function(community){
mean(
item_stability_object$item.stability$empirical.dimensions[structure == community],
na.rm = TRUE
)
}
)
# Set ordering
ordering <- order(as.numeric(names(dimension_stability)))
# Set up results
results <- list(
dimension.stability = list(
structural.consistency = dimension_stability[ordering],
average.item.stability = average_item_stability[ordering]
),
item.stability = item_stability_object
)
# Add class
class(results) <- "dimensionStability"
# Return results
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.