Description Usage Arguments Details Value References See Also Examples
This function performs empirical mode decomposition using spline smoothing not interpolation for sifting process. The smoothing parameter is automatically detemined by cross-validation.
1 2 3 |
xt |
observation or signal observed at time |
tt |
observation index or time index |
cv.kfold |
the number of fold of cross-validation |
cv.tol |
tolerance for cross-validation |
cv.maxiter |
maximum iteration for cross-validation |
emd.tol |
tolerance for stopping rule of sifting. If |
max.sift |
the maximum number of sifting |
stoprule |
stopping rule of sifting. The |
boundary |
specifies boundary condition from “none", “wave", “symmetric", “periodic" or “evenodd". See Zeng and He (2004) for |
smlevels |
specifies which level of the IMF is obtained by smoothing spline. |
max.imf |
the maximum number of IMF's |
This function performs empirical mode decomposition using spline smoothing not interpolation for sifting process. The smoothing parameter is automatically detemined by cross-validation. Optimization is done by golden section search. See Kim et al. (2012) for details.
imf |
IMF's |
residue |
residue signal after extracting IMF's from observations |
nimf |
the number of IMF's |
optlambda |
smoothing parameter minimizing prediction errors of cross-validation |
lambdaconv |
a sequence of smoothing parameters for searching optimal smoothing papameter |
perr |
prediction errors of cross-validation according to |
Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society London A, 454, 903–995.
Huang, N. E. and Wu, Z. (2008) A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46, RG2006.
Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. EURASIP Journal on Advances in Signal Processing, 2012:168, doi: 10.1186/1687-6180-2012-168.
Zeng, K and He, M.-X. (2004) A simple boundary process technique for empirical mode decomposition. Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, 6, 4258–4261.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ndata <- 2048
tt <- seq(0, 9, length=ndata)
xt <- sin(pi * tt) + sin(2* pi * tt) + sin(6 * pi * tt) + 0.5 * tt
set.seed(1)
xt <- xt + rnorm(ndata, 0, sd(xt)/5)
## Not run:
### Empirical Mode Decomposition by Interpolation
emdbyint <- emd(xt, tt, max.imf = 5, boundary = "wave")
### Empirical Mode Decomposition by Smoothing
emdbysm <- semd(xt, tt, cv.kfold=4, boundary="wave", smlevels=1, max.imf=5)
par(mfcol=c(6,2), mar=c(2,2,2,1), oma=c(0,0,2,0))
rangext <- range(xt); rangeimf <- rangext - mean(rangext)
plot(tt, xt, xlab="", ylab="", main="signal", ylim=rangext, type="l")
mtext("Decomposition by EMD", side = 3, line = 2, cex=0.85, font=2)
plot(tt, emdbyint$imf[,1], xlab="", ylab="", main="imf 1", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,2], xlab="", ylab="", main="imf 2", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,3], xlab="", ylab="", main="imf 3", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,4], xlab="", ylab="", main="imf 4", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,5]+emdbyint$residue, xlab="", ylab="", main="remaining signal",
ylim=rangext, type="l")
plot(tt, xt, xlab="", ylab="", main="signal", ylim=rangext, type="l")
mtext("Decomposition by SEMD", side = 3, line = 2, cex=0.85, font=2)
plot(tt, emdbysm$imf[,1], xlab="", ylab="", main="noise", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$imf[,2], xlab="", ylab="", main="imf 1", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$imf[,3], xlab="", ylab="", main="imf 2", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$imf[,4], xlab="", ylab="", main="imf 3", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$residue, xlab="", ylab="", main="residue", ylim=rangext, type="l")
## End(Not run)
|
Loading required package: fields
Loading required package: spam
Loading required package: dotCall64
Loading required package: grid
Spam version 2.2-1 (2018-12-20) is loaded.
Type 'help( Spam)' or 'demo( spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
Attaching package: 'spam'
The following objects are masked from 'package:base':
backsolve, forwardsolve
Loading required package: maps
See www.image.ucar.edu/~nychka/Fields for
a vignette and other supplements.
Loading required package: locfit
locfit 1.5-9.1 2013-03-22
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.