Nothing
# class constructor
EMJMCMC2016$methods(initialize = function(estimator.function = estimate.gamma.cpen, estimator.args.list = list(
family = "gaussian", data = data.example, control.fixed = list(prec = list(default = 0.00001), prec.intercept = 0.00001, mean = list(default = 0), mean.intercept = 0),
control.family = list(hyper = list(prec = list(prior = "loggamma", param = c(0.00001, 0.00001), initial = 0))),
control.compute = list(dic = TRUE, waic = TRUE, mlik = TRUE)
), search.args.list = NULL, latent.formula = "") {
estimator <<- estimator.function
estimator.args <<- estimator.args.list
latent.formula <<- latent.formula
temp.file <- gsub("\\W", "", tempfile())
g.results <<- big.matrix(
nrow = 4, ncol = 2,
backingpath = tempdir(),
backingfile = paste0(temp.file, ".bak"),
descriptorfile = paste0(temp.file, ".desc"),
)
g.results[1, 1] <<- -Inf
g.results[1, 2] <<- 1
g.results[2, 1] <<- Inf
g.results[2, 2] <<- 1
g.results[3, 1] <<- Inf
g.results[3, 2] <<- 1
g.results[4, 1] <<- 0
g.results[4, 2] <<- 0
if (is.null(search.args.list)) {
max.cpu <<- as.integer(Nvars * 0.05 + 1)
objective <<- as.integer(1)
if (Sys.info()["sysname"] == "Windows") {
parallelize <<- lapply
parallelize.global <<- lapply
parallelize.hyper <<- lapply
} else {
parallelize <<- parallel::mclapply
parallelize.global <<- parallel::mclapply
parallelize.hyper <<- parallel::mclapply
}
Nvars <<- as.integer(length(fparam.example))
min.N <<- as.integer(Nvars / 6)
min.N.glob <<- as.integer(Nvars / 3)
max.N.glob <<- as.integer(Nvars / 2)
max.N <<- as.integer(Nvars / 5)
switch.type.glob <<- as.integer(2)
min.N.randomize <<- as.integer(1)
max.N.randomize <<- as.integer(1)
deep.method <<- as.integer(1)
type.randomize <<- as.integer(3)
pool.cor.prob <<- FALSE
prand <<- 0.01
max.cpu.glob <<- as.integer(Nvars * 0.05 + 1)
max.cpu.hyper <<- as.integer(2)
sup.large.n <<- as.integer(1000)
save.beta <<- FALSE
filtered <<- vector(mode = "character", length = 0)
printable.opt <<- FALSE
keep.origin <<- FALSE
thin_rate <<- as.integer(-1)
p.allow.tree <<- 0.6
p.epsilon <<- 0.0001
latnames <<- ""
p.add.default <<- 1
p.allow.replace <<- 0.3
sigmas <<- c("", "sin", "cos", "sigmoid", "tanh", "atan", "erf")
sigmas.prob <<- c(0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
del.sigma <<- 0.5
pool.cross <<- 0.9
gen.prob <<- c(1, 1, 1, 1, 1)
p.nor <<- 0.3
p.and <<- 0.7
max.tree.size <<- as.integer(15)
Nvars.max <<- as.integer(Nvars)
Nvars.init <<- as.integer(Nvars)
allow_offsprings <<- as.integer(0)
mutation_rate <<- as.integer(100)
locstop.nd <<- FALSE
double.hashing <<- (Nvars > 20)
hash.length <<- as.integer(25)
filtered <<- vector(mode = "character", length = 0)
aa <<- 0.9
cc <<- 0.0
M.nd <<- as.integer(min(Nvars, 100))
M.mcmc <<- as.integer(5)
SA.param <<- list(t.min = 0.0001, t.init = 10, dt = 3, M = as.integer(min(Nvars / 5 + 1, 20)))
fobserved <<- fobserved.example
switch.type <<- as.integer(2)
n.size <<- as.integer(10)
LocImprove <<- as.array(c(50, 50, 50, 50, 150))
isobsbinary <<- as.array(0:(length(fparam.example) - 1))
fparam <<- fparam.example
fparam.pool <<- fparam.example
p.add <<- array(data = 0.5, dim = Nvars)
if (exists("statistics")) {
recalc.margin <<- 2^Nvars
} else if (exists("statistics1")) {
recalc.margin <<- 2^Nvars
} else {
recalc.margin <<- 2^Nvars
}
last.mutation <<- as.integer(2^(Nvars / 2) * 0.01)
seed <<- as.integer(stats::runif(n = 1, min = 1, max = 10000))
p.prior <<- stats::runif(n = Nvars, min = 0.5, max = 0.5)
} else {
max.cpu <<- as.integer(search.args.list$max.cpu)
objective <<- as.integer(search.args.list$objective)
parallelize <<- search.args.list$parallelize
latnames <<- search.args.list$latnames
parallelize.global <<- search.args.list$parallelize.global
parallelize.hyper <<- search.args.list$parallelize.hyper
p.prior <<- search.args.list$p.prior
min.N <<- as.integer(search.args.list$min.N)
printable.opt <<- search.args.list$printable.opt
min.N.glob <<- as.integer(search.args.list$min.N.glob)
max.N.glob <<- as.integer(search.args.list$max.N.glob)
switch.type.glob <<- as.integer(search.args.list$switch.type.glob)
min.N.randomize <<- as.integer(search.args.list$min.N.randomize)
max.N.randomize <<- as.integer(search.args.list$max.N.randomize)
type.randomize <<- as.integer(search.args.list$type.randomize)
max.cpu.glob <<- as.integer(search.args.list$max.cpu.glob)
locstop.nd <<- search.args.list$locstop.nd
max.cpu.hyper <<- as.integer(search.args.list$max.cpu.hyper)
save.beta <<- search.args.list$save.beta
aa <<- search.args.list$lambda.a
prand <<- search.args.list$prand
p.add.default <<- search.args.list$ p.add.default
sup.large.n <<- search.args.list$sup.large.n
thin_rate <<- search.args.list$thin_rate
keep.origin <<- search.args.list$keep.origin
cc <<- search.args.list$lambda.c
pool.cor.prob <<- search.args.list$pool.cor.prob
M.nd <<- as.integer(search.args.list$stepsGreedy)
M.mcmc <<- as.integer(search.args.list$stepsLocMCMC)
SA.param <<- search.args.list$SA.params
fobserved <<- search.args.list$fobserved
switch.type <<- as.integer(search.args.list$fswitch.type)
n.size <<- as.integer(search.args.list$n.size)
LocImprove <<- as.array(search.args.list$prior.optimizer.freq)
max.N <<- as.integer(search.args.list$max.N)
fparam <<- search.args.list$fparam
fparam.pool <<- search.args.list$fparam
isobsbinary <<- as.array(0:(length(fparam) - 1))
p.add <<- as.array(search.args.list$p.add)
recalc.margin <<- search.args.list$recalc.margin
Nvars <<- as.integer(length(fparam))
seed <<- search.args.list$seed
max.tree.size <<- as.integer(search.args.list$max.tree.size)
Nvars.max <<- as.integer(search.args.list$Nvars.max)
Nvars.init <<- as.integer(search.args.list$Nvars)
allow_offsprings <<- as.integer(search.args.list$allow_offsprings)
mutation_rate <<- as.integer(search.args.list$mutation_rate)
p.allow.tree <<- search.args.list$p.allow.tree
p.epsilon <<- search.args.list$p.epsilon
p.allow.replace <<- search.args.list$p.allow.replace
last.mutation <<- as.integer(search.args.list$last.mutation)
p.nor <<- search.args.list$p.nor
p.and <<- search.args.list$p.and
deep.method <<- as.integer(search.args.list$deep.method)
sigmas <<- search.args.list$sigmas
sigmas.prob <<- search.args.list$sigmas.prob
del.sigma <<- search.args.list$del.sigma
pool.cross <<- search.args.list$pool.cross
gen.prob <<- search.args.list$gen.prob
double.hashing <<- search.args.list$double.hashing
hash.length <<- as.integer(search.args.list$hash.length)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.