R/emxBehaviorGenetics.R

Defines functions emxVarianceComponents emxCholeskyVariance emxRelatednessMatrix emxKroneckerVariance emxGeneticFactorVariance emxCholeskyComponent emxGeneticFactorComponent emxIndependentPathwayComponent emxCommonPathwayComponent emxTwinModel processRelatedness

Documented in emxCholeskyComponent emxCholeskyVariance emxCommonPathwayComponent emxGeneticFactorComponent emxGeneticFactorVariance emxIndependentPathwayComponent emxKroneckerVariance emxRelatednessMatrix emxTwinModel emxVarianceComponents

#------------------------------------------------------------------------------
# Variance components

emxVarianceComponents <- function(model, data, run){
	
	if(run==TRUE){
		model <- OpenMx::mxRun(model)
	}
	return(model)
}


#model=list(variance=, relatedness=)

#--------------------------------------
# Mid-level Functions

emxCholeskyVariance <- function(x, name, values=.8, free=TRUE){
	# TODO process the actual names of the variables given in x
	# These can be the dimnames of the OpenMx::mxMatrix and OpenMx::mxAlgebra
	nvar <- length(x)
	sqrtName <- paste0('sqrt', name)
	labs <- paste0(sqrtName, outer(1:nvar, 1:nvar, paste0)[lower.tri(matrix(0, nvar, nvar), diag=TRUE)])
	lowerm <- OpenMx::mxMatrix('Lower', nvar, nvar, free, values, labels=labs, name=sqrtName)
	diag(lowerm$lbound) <- 1e-6
	algText <- paste0('mxAlgebra(', sqrtName,' %*% t(', sqrtName, '), name="', name, '")')
	fullm <- eval(parse(text=algText))
	return(list(lowerm, fullm))
}

emxRelatednessMatrix <- function(nvar, values, labels, name='h'){
	if(missing(labels)){labels <- paste0(name, 1:(nvar*(nvar+1)/2))}
	mxMatrix('Symm', nvar, nvar, free=FALSE, values=values, labels=labels, name=name)
}

emxKroneckerVariance <- function(h, v, name){
	if(missing(name)){name <- paste0('kron', v$name)}
	algText <- paste0('mxAlgebra(', h$name, ' %x% ', v$name, ', name=name)')
	ret <- eval(parse(text=algText))
	return(ret)
}

emxGeneticFactorVariance <- function(x, name, values=.8, free=TRUE, lbound=NA, ubound=NA){
	nvar <- length(x)
	sqrtName <- paste0('inner', name)
	labs <- paste0(sqrtName, 1:nvar)
	lowerm <- OpenMx::mxMatrix('Full', nvar, 1, free, values, labels=labs, name=sqrtName, lbound=lbound, ubound=ubound)
	algText <- paste0('mxAlgebra(', sqrtName,' %*% t(', sqrtName, '), name=name)')
	fullm <- eval(parse(text=algText))
	return(list(lowerm, fullm))
}



#--------------------------------------
# Slightly higher-level Functions


emxCholeskyComponent <- function(x, xname, xvalues, xfree, h=2, hname=paste0('H', xname), hvalues, hlabels){
	xmat <- emxCholeskyVariance(x, xname)
	hmat <- emxRelatednessMatrix(h, values=hvalues, labels=hlabels, name=hname)
	kmat <- emxKroneckerVariance(hmat, xmat[[2]], paste0(xname, 'Kron'))
	return(list(xmat[[1]], xmat[[2]], hmat, kmat))
}

emxGeneticFactorComponent <- function(x, xname, xvalues=.8, xfree=TRUE, xlbound=NA, xubound=NA, h=2, hname=paste0('H', xname), hvalues, hlabels){
	xlen <- length(x)
	xmat <- emxGeneticFactorVariance(x, xname, xvalues, xfree, xlbound, xubound)
	hmat <- emxRelatednessMatrix(h, values=hvalues, labels=hlabels, name=hname)
	kmat <- emxKroneckerVariance(hmat, xmat[[2]], paste0(xname, 'Kron'))
	return(list(xmat[[1]], xmat[[2]], hmat, kmat))
}

emxIndependentPathwayComponent <- function(x, xname, xvalues=.8, xfree=TRUE, xlbound=NA, xubound=NA, h=2, hname=paste0('H', xname), hvalues, hlabels){
	xlen <- length(x)
	xmat <- emxGeneticFactorVariance(x, xname, xvalues, xfree, xlbound, xubound)
	dmat <- OpenMx::mxMatrix(type='Diag', nrow=xlen, ncol=xlen, values=.2, lbound=1e-8, free=TRUE, labels=paste0('uni', xname, 1:xlen), name=paste0('unique', xname))
	cmat <- OpenMx::mxAlgebraFromString(paste0(xmat[[2]]$name, " + ", dmat$name), name=paste0('ip', xname))
	hmat <- emxRelatednessMatrix(h, values=hvalues, labels=hlabels, name=hname)
	kmat <- emxKroneckerVariance(hmat, cmat, paste0(xname, 'Kron'))
	return(list(xmat[[1]], xmat[[2]], hmat, kmat, dmat, cmat))
}

emxCommonPathwayComponent <- function(x, xname, xvalues=.8, xfree=TRUE, xlbound=NA, xubound=NA, h=2, hname=paste0('H', xname), hvalues, hlabels){
	stop("Sorry, boo.  This is not yet implemented.")
}

#TODO
# Genetic Factor model
# A  = la %*% t(la)
# C  = lc %*% t(lc)
# E  = le %*% t(le)
# Cov = A+C+E
#       h*A+C  A+C+E
#
#  la, lc, le are Nx1
#
#
# Add Independent pathway model component function
# It's basically a genetic factor model for each A/C/E component
#  plus a uniquenesses for each component.
# A  = la %*% t(la) + ua
# C  = lc %*% t(lc) + uc
# E  = le %*% t(le) + ue
# Cov = A+C+E
#       h*A+C  A+C+E
#
#  la, lc, le are Nx1
#  ua, uc, ue are NxN diagonal
#
#
# Common Pathway model component function
# A  = lf %*% la %*% t(la) %*% lf + ua
# C  = lf %*% lc %*% t(lc) %*% lf + uc
# E  = lf %*% le %*% t(le) %*% lf + ue
# Cov = A+C+E
#       h*A+C  A+C+E
#
#  lf is Nx1
#  la, lc, le are 1x1
#  ua, uc, ue are NxN diagonal
#
#



#--------------------------------------
# Very-high level Functions

#model=Factor, Cholesky, IndependentPathway, CommonPathway
emxTwinModel <- function(model="Cholesky", relatedness, data, run=FALSE, use, name='model', components='ACE'){
	#TODO Add processing for the model argument
	#TODO Figure out how to identify these models
	#TODO How to specify subsets of A, D, C, E components
	model <- match.arg(tolower(model), choices=c('factor', 'independentpathway', 'commonpathway', 'cholesky'))
	components <- match.arg(toupper(components), choices=c('ACE', 'ADE')) # TODO add processing for other nice combinations
	fixc <- ifelse(model %in% c('factor', 'independentpathway', 'commonpathway'), TRUE, FALSE)
	#TODO Parse relatedness argument
		#When string, interpret as name of variables in data set giving coeficient of relatedness
		#When single number, interpret as numeric value of the coefficient of relatedness
	prList <- processRelatedness(relatedness, data)
	data <- prList$data
	hlab <- prList$lab
	hval <- prList$val
	if(components == 'ADE'){
		pdList <- processRelatedness(relatedness, data, 'dominance')
		data <- pdList$data
		dlab <- pdList$lab
		dval <- pdList$val
		comp2name <- 'D'
	} else if(components == 'ACE'){
		dlab <- c(NA, NA, NA)
		dval <- c(1, 1, 1)
		comp2name <- 'C'
	}
	x <- paste0('x', 1:(length(use)/2))
	componentFun <- switch(model,
		cholesky = emxCholeskyComponent,
		factor = emxGeneticFactorComponent,
		independentpathway = emxIndependentPathwayComponent,
		commonpathway = emxCommonPathwayComponent)
	acomp <- componentFun(x, 'A', hvalues=hval, hlabels=hlab)
	ccomp <- componentFun(x, comp2name, hvalues=dval, hlabels=dlab, xvalues=ifelse(fixc, 1, .8), xfree=!fixc)
	ecomp <- componentFun(x, 'E', hvalues=c(1, 0, 1))
	rcomp <- emxResiduals(use, values=ifelse(model %in% 'factor', .2, 0), free=model %in% 'factor')
	totalVar <- OpenMx::mxAlgebraFromString(paste0('AKron + ', paste0(comp2name, 'Kron'), ' + EKron + Residuals'), name='V', dimnames=list(use, use))
	totalMean <- emxMeans(use, type='twin')
	expect <- OpenMx::mxExpectationNormal(totalVar$name, totalMean$name)
	fitfun <- OpenMx::mxFitFunctionML()
	
	comlist <- c(acomp, ccomp, ecomp, list(rcomp, totalVar, totalMean, expect, fitfun))
	
	model <- OpenMx::mxModel(model=name, comlist, OpenMx::mxData(data, 'raw'))
	if(run){
		model <- OpenMx::mxRun(model)
	}
	return(model)
}

#emxCholeskyModel(model=c('A','C', 'E'), relatedness=c('standard', 'RCoef'), data=mzdzData)

emxModelTwin <- emxTwinModel

processRelatedness <- function(relatedness, data, type='additive'){
	rlen <- length(relatedness)
	if(type == 'additive'){
		if(rlen == 1){
			if(is.numeric(relatedness)){
				hval <- c(1, relatedness, 1)
				hlab <- c(NA, NA, NA)
			} else if(is.character(relatedness)){
				hval <- c(1, .5, 1)
				hlab <- c(NA, paste0('data.', relatedness), NA)
			}
		} else if(rlen == nrow(data)){
			data <- cbind(data, RelatednessCoefficient=relatedness)
			hval <- c(1, .5, 1)
			hlab <- c(NA, paste0('data.', 'RelatednessCoefficient'), NA)
		}
	} else if(type == 'dominance'){
		if(rlen == 1){
			if(is.numeric(relatedness)){
				hval <- c(1, (relatedness^2)*as.numeric(relatedness >= .5), 1)
				hlab <- c(NA, NA, NA)
			} else if(is.character(relatedness)){
				hval <- c(1, .25, 1)
				hlab <- c(NA, paste0('data.Dominance', relatedness), NA)
				data <- as.data.frame(data)
				data[ , paste0('Dominance', relatedness)] <- (data[ , relatedness]^2)*as.numeric(data[ , relatedness] >= .5)
			}
		} else if(rlen == nrow(data)){
			data <- cbind(data, DominanceCoefficient=(relatedness^2)*as.numeric(relatedness >= .5))
			hval <- c(1, .25, 1)
			hlab <- c(NA, paste0('data.', 'DominanceCoefficient'), NA)
		}
	} else {stop("Unknown 'type' argument for processing relatedness.\nShould be 'additive' or 'dominance'.")}
	return(list(val=hval, lab=hlab, data=data))
}

Try the EasyMx package in your browser

Any scripts or data that you put into this service are public.

EasyMx documentation built on Jan. 30, 2020, 5:07 p.m.