Nothing
sdfaREF <- c(
"invalid", "invalid", "invalid", "invalid", "invalid", "Male",
"Female", "Female", "Male", "Female", "other invalid", "other invalid",
"other invalid", "other invalid", "other invalid", "Male", "Male",
"Male", "Male", "Male"
)
es1REF <- c(
"",
"Formula: composite ~ dsex + b017451 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16331",
"",
"",
"Summary Table:",
" dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.057078",
" Male Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.305922",
" Male About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.409587",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.546072",
" Male Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.795784",
" Female Never or hardly ever 1487 1517.609 18.20203 0.5078805 266.7897 1.519020",
" Female Once every few weeks 1544 1552.149 18.61630 0.4892491 271.2255 1.205528",
" Female About once a week 1469 1514.403 18.16358 0.5782966 278.7502 1.719778",
" Female 2 or 3 times a week 1827 1862.502 22.33864 0.4844840 282.7765 1.404107",
" Female Every day 1841 1890.918 22.67945 0.6553039 275.4628 1.219439"
)
es2REF <- c(
"",
"Formula: composite ~ dsex + b017451 ",
"",
"Plausible values: 5",
"jrrIMax: 5",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 8163",
"",
"",
"Summary Table:",
" dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.063871",
" Male Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.364160",
" Male About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.418074",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.516851",
" Male Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.787613"
)
es2bREF <- c(
"",
"Formula: composite ~ dsex + b017451 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 8486",
"",
"",
"Summary Table:",
" dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.8441 28.60492810 0.68430755 270.8243 1.057078",
" Male Once every few weeks 1603 1638.7454 19.25223646 0.49453557 275.0807 1.305922",
" Male About once a week 1384 1423.3119 16.72129011 0.50183066 281.5612 1.409587",
" Male 2 or 3 times a week 1535 1563.3931 18.36698589 0.47896939 284.9066 1.546072",
" Male Every day 1291 1332.8898 15.65899718 0.57813910 277.2597 1.795784",
" Male Omitted 316 111.8050 1.31350257 0.14918974 247.3158 3.153504",
" Male Multiple 7 6.9849 0.08205969 0.03808503 269.6227 14.332979"
)
es3REF <- c(
"",
"Formula: composite ~ lep + ell3 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16910",
"",
"",
"Summary Table:",
" lep ell3 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Yes Yes 974 1174.6779 100.00000 0.0000000 242.6400 2.532236",
" Yes No 0 0.0000 0.00000 NA NA NA",
" Yes Formerly ELL 0 0.0000 0.00000 NA NA NA",
" No Yes 0 0.0000 0.00000 NA NA NA",
" No No 15670 15409.5372 97.80187 0.4011031 278.4854 0.804167",
" No Formerly ELL 266 346.3346 2.19813 0.4011031 273.1676 2.594586"
)
es4REF <- c(
"",
"Formula: composite ~ lep + ell3 + dsex ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16910",
"",
"",
"Summary Table:",
" lep ell3 dsex N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Yes Yes Male 523 625.3030 53.23187 2.0754188 245.5156 3.0412906",
" Yes Yes Female 451 549.3749 46.76813 2.0754188 239.3670 2.6004242",
" Yes No Male 0 0.0000 NA NA NA NA",
" Yes No Female 0 0.0000 NA NA NA NA",
" Yes Formerly ELL Male 0 0.0000 NA NA NA NA",
" Yes Formerly ELL Female 0 0.0000 NA NA NA NA",
" No Yes Male 0 0.0000 NA NA NA NA",
" No Yes Female 0 0.0000 NA NA NA NA",
" No No Male 7828 7723.4302 50.12110 0.5013799 279.2644 0.8048072",
" No No Female 7842 7686.1070 49.87890 0.5013799 277.7026 0.9301768",
" No Formerly ELL Male 131 161.4708 46.62277 5.1070256 276.0706 3.2811027",
" No Formerly ELL Female 135 184.8638 53.37723 5.1070256 270.6318 2.9073272"
)
es11REF1 <- c(
"",
"Formula: b017451 ~ dsex ",
"",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16331",
"",
"",
"Summary Table:",
" dsex N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male 8163 8393.184 50.16617 0.5101521 2.728439 0.02403706",
" Female 8168 8337.580 49.83383 0.5101521 3.126772 0.01859650"
)
es1rREF <- c(
"",
"Formula: composite ~ dsex + b017451 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16331",
"",
"",
"Summary Table:",
" dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Female Never or hardly ever 1487 1517.609 18.20203 0.5078805 266.7897 1.519020",
" Female Once every few weeks 1544 1552.149 18.61630 0.4892491 271.2255 1.205528",
" Female About once a week 1469 1514.403 18.16358 0.5782966 278.7502 1.719778",
" Female 2 or 3 times a week 1827 1862.502 22.33864 0.4844840 282.7765 1.404107",
" Female Every day 1841 1890.918 22.67945 0.6553039 275.4628 1.219439",
" MALE Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.057078",
" MALE Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.305922",
" MALE About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.409587",
" MALE 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.546072",
" MALE Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.795784"
)
es1tREF <- c(
"",
"Formula: composite ~ dsex + b017451 ",
"",
"Plausible values: 5",
"Weight variable: 'origwt'",
"Variance method: Taylor series",
"full data n: 17606",
"n used: 16331",
"",
"",
"Summary Table:",
" dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6968466 270.8243 1.064411",
" Male Once every few weeks 1603 1638.745 19.52472 0.5017827 275.0807 1.363576",
" Male About once a week 1384 1423.312 16.95795 0.5060344 281.5612 1.417767",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4810093 284.9066 1.513590",
" Male Every day 1291 1332.890 15.88062 0.5866306 277.2597 1.789257",
" Female Never or hardly ever 1487 1517.609 18.20203 0.5079071 266.7897 1.535320",
" Female Once every few weeks 1544 1552.149 18.61630 0.4889362 271.2255 1.208797",
" Female About once a week 1469 1514.403 18.16358 0.5787277 278.7502 1.739417",
" Female 2 or 3 times a week 1827 1862.502 22.33864 0.4846566 282.7765 1.386048",
" Female Every day 1841 1890.918 22.67945 0.6554100 275.4628 1.242831"
)
es3tREF <- c(
"",
"Formula: composite ~ lep + ell3 ",
"",
"Plausible values: 5",
"Weight variable: 'origwt'",
"Variance method: Taylor series",
"full data n: 17606",
"n used: 16910",
"",
"",
"Summary Table:",
" lep ell3 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Yes Yes 974 1174.6779 100.00000 0.0000000 242.6400 2.486567",
" Yes No 0 0.0000 0.00000 NA NA NA",
" Yes Formerly ELL 0 0.0000 0.00000 NA NA NA",
" No Yes 0 0.0000 0.00000 NA NA NA",
" No No 15670 15409.5372 97.80187 0.4014304 278.4854 0.797255",
" No Formerly ELL 266 346.3346 2.19813 0.4014304 273.1676 2.045678"
)
es4tREF <- c(
"",
"Formula: composite ~ lep + ell3 + dsex ",
"",
"Plausible values: 5",
"Weight variable: 'origwt'",
"Variance method: Taylor series",
"full data n: 17606",
"n used: 16910",
"",
"",
"Summary Table:",
" lep ell3 dsex N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Yes Yes Male 523 625.3030 53.23187 1.9890178 245.5156 3.0903652",
" Yes Yes Female 451 549.3749 46.76813 1.9890178 239.3670 2.4980995",
" Yes No Male 0 0.0000 NA NA NA NA",
" Yes No Female 0 0.0000 NA NA NA NA",
" Yes Formerly ELL Male 0 0.0000 NA NA NA NA",
" Yes Formerly ELL Female 0 0.0000 NA NA NA NA",
" No Yes Male 0 0.0000 NA NA NA NA",
" No Yes Female 0 0.0000 NA NA NA NA",
" No No Male 7828 7723.4302 50.12110 0.5018499 279.2644 0.8304033",
" No No Female 7842 7686.1070 49.87890 0.5018499 277.7026 0.8980066",
" No Formerly ELL Male 131 161.4708 46.62277 3.2749498 276.0706 2.2525511",
" No Formerly ELL Female 135 184.8638 53.37723 3.2749498 270.6318 2.1989056"
)
es2tREF <- c(
"",
"Formula: composite ~ dsex + b017451 ",
"",
"Plausible values: 5",
"Weight variable: 'origwt'",
"Variance method: Taylor series",
"full data n: 17606",
"n used: 8163",
"",
"",
"Summary Table:",
" dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6968466 270.8243 1.064411",
" Male Once every few weeks 1603 1638.745 19.52472 0.5017827 275.0807 1.363576",
" Male About once a week 1384 1423.312 16.95795 0.5060344 281.5612 1.417767",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4810093 284.9066 1.513590",
" Male Every day 1291 1332.890 15.88062 0.5866306 277.2597 1.789257"
)
es5REF <- c(
"",
"Formula: composite ~ dsex + b017451 + b003501 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 11220",
"",
"",
"Summary Table:",
" dsex b017451 b003501 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever Did not finish H.S. 272 310.8802 17.72940063 1.14024611 263.9155 2.991726",
" Male Never or hardly ever Graduated H.S. 537 578.2229 32.97587125 1.88469879 267.4535 1.843952",
" Male Never or hardly ever Some ed after H.S. 331 317.7697 18.12230667 1.24832679 280.4252 2.261628",
" Male Never or hardly ever I Don't Know 532 529.9507 30.22292277 1.56536824 261.6397 2.040295",
" Male Never or hardly ever Omitted 12 11.2908 0.64391079 0.25022633 268.9041 14.753081",
" Male Never or hardly ever Multiple 8 5.3584 0.30558788 0.12404461 240.3699 9.304228",
" Male Once every few weeks Did not finish H.S. 146 163.2387 14.85354708 1.61622652 259.5417 3.630696",
" Male Once every few weeks Graduated H.S. 346 330.9260 30.11188475 1.87614642 272.5339 2.588797",
" Male Once every few weeks Some ed after H.S. 278 283.3226 25.78031789 1.75745099 281.7856 2.809875",
" Male Once every few weeks I Don't Know 281 304.8037 27.73494342 1.71243269 258.8692 3.517282",
" Male Once every few weeks Omitted 12 15.7402 1.43224494 0.60410794 263.9764 15.310143",
" Male Once every few weeks Multiple 2 0.9568 0.08706192 0.07535344 280.4576 45.423116",
" Male About once a week Did not finish H.S. 121 135.6330 15.58203525 1.88294733 267.6255 3.998351",
" Male About once a week Graduated H.S. 280 271.1711 31.15316803 1.88183648 274.2035 2.677930",
" Male About once a week Some ed after H.S. 260 258.4927 29.69662518 2.22119486 283.3629 2.935690",
" Male About once a week I Don't Know 177 198.9762 22.85914315 1.82072979 271.2701 2.870066",
" Male About once a week Omitted 6 4.1145 0.47268942 0.29109262 269.7929 20.076189",
" Male About once a week Multiple 2 2.0572 0.23633897 0.17157444 236.3750 12.703270",
" Male 2 or 3 times a week Did not finish H.S. 89 96.6894 10.44282542 1.52159467 266.8165 4.107300",
" Male 2 or 3 times a week Graduated H.S. 293 306.6696 33.12149102 2.41121904 275.9671 2.477269",
" Male 2 or 3 times a week Some ed after H.S. 289 303.0328 32.72870270 2.18848867 286.4461 2.983216",
" Male 2 or 3 times a week I Don't Know 193 210.3634 22.72005267 1.86922563 264.9552 3.162175",
" Male 2 or 3 times a week Omitted 9 8.7073 0.94042174 0.38952042 283.6697 24.843980",
" Male 2 or 3 times a week Multiple 1 0.4306 0.04650645 0.04655901 248.7740 NA",
" Male Every day Did not finish H.S. 90 85.7821 11.36255833 1.64520050 257.4599 5.883638",
" Male Every day Graduated H.S. 215 213.8557 28.32698041 1.95061779 273.4292 3.602727",
" Male Every day Some ed after H.S. 229 227.9686 30.19635233 2.14371557 283.3870 3.215319",
" Male Every day I Don't Know 172 216.3440 28.65657661 1.98956599 251.6449 3.370548",
" Male Every day Omitted 8 7.2720 0.96323737 0.44820372 262.7851 14.299386",
" Male Every day Multiple 5 3.7317 0.49429495 0.36912334 257.0412 8.431290",
" Male Omitted Did not finish H.S. 4 3.3967 3.12085396 1.68883400 234.8160 28.218381",
" Male Omitted Graduated H.S. 9 7.1764 6.59360449 2.79795593 247.5784 10.179278",
" Male Omitted Some ed after H.S. 4 1.7702 1.62644204 1.07306114 261.6516 11.101459",
" Male Omitted I Don't Know 6 6.9372 6.37382992 3.46135576 236.1812 24.900647",
" Male Omitted Omitted 291 89.5583 82.28526959 4.00340538 249.1822 3.833965",
" Male Omitted Multiple 0 0.0000 0.00000000 NA NA NA",
" Male Multiple Did not finish H.S. 0 0.0000 0.00000000 NA NA NA",
" Male Multiple Graduated H.S. 0 0.0000 0.00000000 NA NA NA",
" Male Multiple Some ed after H.S. 3 1.5787 39.28384801 21.17715124 300.7674 10.920051",
" Male Multiple I Don't Know 0 0.0000 0.00000000 NA NA NA",
" Male Multiple Omitted 1 2.4400 60.71615199 21.17715124 239.0700 NA",
" Male Multiple Multiple 0 0.0000 0.00000000 NA NA NA",
" Female Never or hardly ever Did not finish H.S. 257 265.8121 22.66087809 1.83211169 257.9069 2.866308",
" Female Never or hardly ever Graduated H.S. 370 393.8865 33.57941176 2.35231946 266.8433 2.494888",
" Female Never or hardly ever Some ed after H.S. 194 198.6895 16.93857630 1.10226541 276.9228 3.159055",
" Female Never or hardly ever I Don't Know 287 308.6794 26.31537937 1.83786094 255.5826 2.689146",
" Female Never or hardly ever Omitted 5 5.2627 0.44865303 0.26376131 304.8005 19.068264",
" Female Never or hardly ever Multiple 1 0.6698 0.05710145 0.05715608 243.7680 NA",
" Female Once every few weeks Did not finish H.S. 192 201.7517 17.95235277 1.22332270 263.7769 3.318216",
" Female Once every few weeks Graduated H.S. 380 393.1678 34.98501892 1.82186485 267.4015 2.371553",
" Female Once every few weeks Some ed after H.S. 293 279.0163 24.82754319 1.55330632 280.9736 2.213633",
" Female Once every few weeks I Don't Know 238 246.1979 21.90728282 1.69820519 256.3427 2.593089",
" Female Once every few weeks Omitted 3 3.6839 0.32780231 0.22221000 314.9975 6.349582",
" Female Once every few weeks Multiple 0 0.0000 0.00000000 NA NA NA",
" Female About once a week Did not finish H.S. 179 179.8877 17.92442311 1.97991477 263.5835 4.033825",
" Female About once a week Graduated H.S. 341 374.5580 37.32181840 1.73884157 270.8901 2.059339",
" Female About once a week Some ed after H.S. 294 297.4837 29.64195833 2.52591357 287.3299 2.680853",
" Female About once a week I Don't Know 136 144.7233 14.42056163 1.78256095 259.4214 5.090724",
" Female About once a week Omitted 2 2.4878 0.24789010 0.18007066 236.0346 29.429139",
" Female About once a week Multiple 4 4.4494 0.44334842 0.24680401 245.1905 10.552792",
" Female 2 or 3 times a week Did not finish H.S. 210 233.0401 19.69274631 1.84788931 264.5228 3.795271",
" Female 2 or 3 times a week Graduated H.S. 367 360.9226 30.49928831 1.37541795 273.5378 2.303132",
" Female 2 or 3 times a week Some ed after H.S. 373 355.9466 30.07879799 1.75930337 285.5323 2.204383",
" Female 2 or 3 times a week I Don't Know 197 221.6541 18.73058739 1.48982635 264.9600 3.556201",
" Female 2 or 3 times a week Omitted 6 8.3724 0.70749862 0.35568288 269.3777 21.036096",
" Female 2 or 3 times a week Multiple 2 3.4446 0.29108138 0.22778894 278.1615 12.995606",
" Female Every day Did not finish H.S. 187 211.7498 18.55141968 1.40156898 259.5774 3.365343",
" Female Every day Graduated H.S. 361 356.2339 31.20968512 1.75205623 263.8997 2.533536",
" Female Every day Some ed after H.S. 371 366.2800 32.08982488 1.76279222 284.2834 1.954843",
" Female Every day I Don't Know 193 203.3300 17.81376022 1.49573474 248.0493 3.198495",
" Female Every day Omitted 2 0.2870 0.02514410 0.02502224 231.7420 NA",
" Female Every day Multiple 3 3.5403 0.31016601 0.24172024 269.4525 11.741929",
" Female Omitted Did not finish H.S. 1 1.7223 2.13525117 2.07803300 279.7860 NA",
" Female Omitted Graduated H.S. 5 11.3386 14.05722518 8.22953780 215.9616 43.566724",
" Female Omitted Some ed after H.S. 2 0.9568 1.18620932 1.04126567 304.0706 64.226485",
" Female Omitted I Don't Know 4 6.6022 8.18519148 4.83360599 182.8789 22.518459",
" Female Omitted Omitted 245 60.0404 74.43612285 8.75090822 257.7866 6.690911",
" Female Omitted Multiple 0 0.0000 0.00000000 NA NA NA",
" Female Multiple Did not finish H.S. 0 0.0000 0.00000000 NA NA NA",
" Female Multiple Graduated H.S. 0 0.0000 0.00000000 NA NA NA",
" Female Multiple Some ed after H.S. 0 0.0000 0.00000000 NA NA NA",
" Female Multiple I Don't Know 1 0.1435 100.00000000 NA 293.5940 NA",
" Female Multiple Omitted 0 0.0000 0.00000000 NA NA NA",
" Female Multiple Multiple 0 0.0000 0.00000000 NA NA NA"
)
estwith0REF <- c(
"",
"Formula: composite ~ b003501 + m815401 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 11220",
"",
"",
"Summary Table:",
" b003501 m815401 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Did not finish H.S. Easier than others 860 941.6337 49.83286267 1.64889511 268.3298 1.803212",
" Did not finish H.S. As hard as others 610 660.9430 34.97823171 1.80714925 260.0554 2.031126",
" Did not finish H.S. Harder than others 158 161.3728 8.54012402 0.73901762 255.5587 2.911688",
" Did not finish H.S. Much harder 71 67.3144 3.56239295 0.57731370 237.5406 7.030221",
" Did not finish H.S. Omitted 47 54.7796 2.89902993 0.59089141 237.9851 6.155979",
" Did not finish H.S. Multiple 2 3.5403 0.18735872 0.13696789 241.7904 10.080054",
" Graduated H.S. Easier than others 1755 1836.0455 51.02778274 1.21872773 275.0705 1.128695",
" Graduated H.S. As hard as others 1211 1222.7080 33.98177125 1.19322392 267.7533 1.180079",
" Graduated H.S. Harder than others 334 332.6968 9.24638307 0.67937504 263.6961 2.648693",
" Graduated H.S. Much harder 101 106.5451 2.96112499 0.45568508 237.5003 5.862016",
" Graduated H.S. Omitted 99 97.2152 2.70182635 0.42176804 254.6397 5.727409",
" Graduated H.S. Multiple 4 2.9185 0.08111160 0.05140085 255.7386 16.510320",
" Some ed after H.S. Easier than others 1479 1558.4164 53.88140863 1.28505307 290.1307 1.112578",
" Some ed after H.S. As hard as others 1064 1015.5016 35.11042150 1.29074248 278.2807 1.266867",
" Some ed after H.S. Harder than others 250 208.7832 7.21856682 0.59140478 269.7629 3.847818",
" Some ed after H.S. Much harder 57 47.6512 1.64751460 0.30681445 254.0030 6.018615",
" Some ed after H.S. Omitted 69 60.6641 2.09742862 0.39367631 263.6685 4.516513",
" Some ed after H.S. Multiple 2 1.2917 0.04465983 0.04026678 251.3682 7.558644",
" I Don't Know Easier than others 1078 1204.2905 46.34193654 1.44483641 264.6348 1.749268",
" I Don't Know As hard as others 868 928.3830 35.72482393 1.24387807 256.7520 1.884006",
" I Don't Know Harder than others 274 273.8016 10.53607611 0.71134338 255.4384 2.958810",
" I Don't Know Much harder 103 89.4648 3.44266777 0.46714337 243.9997 4.759095",
" I Don't Know Omitted 93 101.9524 3.92319930 0.56310218 237.8497 3.975815",
" I Don't Know Multiple 1 0.8133 0.03129635 0.03132223 292.2200 NA",
" Omitted Easier than others 31 37.3172 17.01982100 3.41767224 286.8190 8.815679",
" Omitted As hard as others 29 27.4135 12.50289044 3.13717532 258.3821 7.985184",
" Omitted Harder than others 7 5.5018 2.50928931 1.09558321 252.8294 32.209054",
" Omitted Much harder 4 5.9324 2.70567958 1.49181111 249.4781 8.429959",
" Omitted Omitted 531 143.0924 65.26231966 4.35263126 252.1139 3.665201",
" Omitted Multiple 0 0.0000 0.00000000 NA NA NA",
" Multiple Easier than others 13 8.0853 32.81531568 12.57870084 252.9200 8.349768",
" Multiple As hard as others 13 13.8744 56.31118399 9.39004975 251.1944 7.175494",
" Multiple Harder than others 0 0.0000 0.00000000 NA NA NA",
" Multiple Much harder 1 0.1435 0.58241473 0.61353570 240.2340 NA",
" Multiple Omitted 1 2.5356 10.29108560 10.49245307 280.2800 NA",
" Multiple Multiple 0 0.0000 0.00000000 NA NA NA"
)
logit1REF <- c(
"",
"Formula: I(composite > 300) ~ dsex + b013801",
"Family: binomial (logit)",
"",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16359",
"",
"Coefficients:",
" coef se t dof Pr(>|t|) ",
"(Intercept) -2.4626 0.1435 -17.1647 38.6 < 2e-16 ***",
"dsexFemale -0.2469 0.0527 -4.6860 60.0 1.6e-05 ***",
"b01380111-25 0.5953 0.1550 3.8400 42.6 4e-04 ***",
"b01380126-100 1.5613 0.1596 9.7840 40.1 3.5e-12 ***",
"b013801>100 2.3546 0.1441 16.3358 57.3 < 2e-16 ***",
"---",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
)
gap0REF <- c(
"Call: gap(variable = \"b003501\", data = sdf, groupA = m815401 %in% \"Multiple\", ",
" groupB = \"default\", targetLevel = \"Multiple\", dropOmittedLevels = FALSE, ",
" returnVarEstInputs = TRUE, returnSimpleDoF = TRUE, returnSimpleN = TRUE)",
"",
"Labels:",
" group definition nFullData nUsed",
" A m815401 %in% \"Multiple\" 17606 18",
" B default 17606 16915",
"",
"Percentage:",
" pctA pctAse dofA pctB pctBse dofB diffAB covAB diffABse diffABpValue dofAB",
" 0.09917399 0.031552 12.846 100 0 0 -99.901 0 0.031552 < 2.2e-16 12.846",
"",
"Results:",
" estimateA estimateAse dofA estimateB estimateBse dofB diffAB covAB diffABse diffABpValue dofAB",
" 0 NA NA 0.2195 0.0664 9.757 -0.2195 0 NA NA NA"
)
wt1REF <- c(
"Wald test:",
"----------",
"H0:",
"b017451Once every few weeks = 0",
"b017451About once a week = 0",
"b0174512 or 3 times a week = 0",
"b017451Every day = 0",
"",
"Chi-square test:",
"X2 = 159.9, df = 4, P(> X2) = 0.0",
"",
"F test:",
"W = 38.0, df1 = 4, df2 = 59, P(> W) = 1.1e-15"
)
wt2REF <- c(
"Wald test:",
"----------",
"H0:",
"b017451Once every few weeks = 0",
"b017451About once a week = 0",
"b0174512 or 3 times a week = 0",
"b017451Every day = 0",
"",
"Chi-square test:",
"X2 = 185.8, df = 4, P(> X2) = 0.0",
"",
"F test:",
"W = 44.2, df1 = 4, df2 = 59, P(> W) = 0"
)
wt3REF <- c(
"Wald test:", "----------",
"H0:",
"b017451Once every few weeks = 0",
"b017451About once a week = 0",
"b0174512 or 3 times a week = 0",
"b017451Every day = 0",
"",
"Chi-square test:",
"X2 = 180.3, df = 4, P(> X2) = 0.0", "",
"F test:",
"W = 42.9, df1 = 4, df2 = 59, P(> W) = 0"
)
wt4REF <- c(
"Wald test:", "----------",
"H0:",
"b017451Once every few weeks = 0",
"b017451About once a week = 0",
"b0174512 or 3 times a week = 0",
"b017451Every day = 0",
"",
"Chi-square test:",
"X2 = 159.9, df = 4, P(> X2) = 0.0",
"",
"F test:",
"W = 38.0, df1 = 4, df2 = 59, P(> W) = 1.1e-15"
)
es_norhsREF <- c(
"",
"Formula: composite ~ 1 ",
"",
"Plausible values: 5",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16915",
"",
"",
"Summary Table:",
" N WTD_N PCT MEAN SE(MEAN)",
" 16915 16932.46 100 275.8892 0.8217878"
)
dplO <- c(
"",
"Formula: composite - geometry ~ avg_5",
"",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"Plausible values: 5",
"jrrIMax: 1",
"full data n: 17606",
"n used: 15144", "",
"Coefficients:",
" coef se t dof Pr(>|t|) ",
"(Intercept) -32.1895692 1.7984639 -17.898 58.289 < 2.2e-16 ***",
"avg_5 0.1264752 0.0063834 19.813 53.390 < 2.2e-16 ***",
"---",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1",
"",
"Multiple R-squared: 0.113",
""
)
gapPSUREF <- c(
"Call: gap(variable = \"composite\", data = sdf, groupA = dsex %in% \"Male\", ",
" groupB = dsex %in% \"Female\", returnNumberOfPSU = TRUE)",
"",
"Labels:",
" group definition nFullData nUsed nPSU",
" A dsex %in% \"Male\" 17606 8486 124",
" B dsex %in% \"Female\" 17606 8429 124",
"",
"Percentage:",
" pctA pctAse pctB pctBse diffAB covAB diffABse diffABpValue dofAB",
" 50.27015 0.50168 49.73 0.50168 0.54029 -0.25168 1.0034 0.5925 53.457",
"",
"Results:",
" estimateA estimateAse estimateB estimateBse diffAB covAB diffABse diffABpValue dofAB",
" 276.7235 0.82071 275.05 0.94025 1.6778 0.56766 0.64987 0.01259 53.71"
)
sPV_wREF <- c(
"Estimates are weighted using the weight variable 'origwt'",
" Variable N Weighted N Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA's Zero weights",
"1 composite 16915 16932.46 126.110 251.9626 277.4784 275.8892 301.1827 404.184 36.57130 0 0",
"2 algebra 16915 16932.46 109.842 254.7982 279.8320 278.9366 304.0186 412.152 36.65571 0 0"
)
sPVREF <- c(
"Estimates are not weighted.", " Variable N Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA's",
"1 mrpcm1 16915 130.53 252.0600 277.33 275.8606 300.7200 410.80 35.89864 0",
"2 mrpcm2 16915 124.16 252.2100 277.33 275.6399 300.6900 408.58 36.08483 0",
"3 mrpcm3 16915 115.09 252.0017 277.19 275.6570 300.5600 398.17 36.09278 0",
"4 mrpcm4 16915 137.19 252.4717 277.44 275.7451 300.5767 407.41 35.91078 0",
"5 mrpcm5 16915 123.58 252.4900 277.16 275.6965 300.5000 395.96 36.10905 0"
)
sDiscrete_wREF <- c(
"Estimates are weighted using the weight variable 'origwt'",
" b017451 dsex N Weighted N Weighted Percent Weighted Percent SE",
"1 Never or hardly ever Male 2350 2434.84 61.6 1.07",
"2 Never or hardly ever Female 1487 1517.61 38.4 1.07",
"3 Once every few weeks Male 1603 1638.75 51.4 0.93",
"4 Once every few weeks Female 1544 1552.15 48.6 0.93",
"5 About once a week Male 1384 1423.31 48.4 1.27",
"6 About once a week Female 1469 1514.40 51.6 1.27",
"7 2 or 3 times a week Male 1535 1563.39 45.6 1.01",
"8 2 or 3 times a week Female 1827 1862.50 54.4 1.01",
"9 Every day Male 1291 1332.89 41.3 1.22",
"10 Every day Female 1841 1890.92 58.7 1.22",
"11 Omitted Male 316 111.80 57.5 3.97",
"12 Omitted Female 259 82.53 42.5 3.97",
"13 Multiple Male 7 6.98 94.8 4.17",
"14 Multiple Female 2 0.38 5.2 4.17"
)
sDiscreteREF <- c(
"Estimates are not weighted.",
" dsex N Percent",
"1 Male 8486 50.17",
"2 Female 8429 49.83"
)
cor_nocondenseREF <- c(
"Method: Pearson",
"full data n: 17606",
"n used: 14816",
"",
"Correlation: 0.1783",
"Standard Error: 0.06575",
"Confidence Interval: [0.03961, 0.3103]",
"",
"Correlation Levels:",
" Levels for Variable 'c046501' (Lowest level first):",
" 1. 0%",
" 2. 1-5%",
" 3. 6-10%",
" 4. 11-25%",
" 5. 26-50%",
" 8. Over 90%",
" Levels for Variable 'c044006' (Lowest level first):",
" 1. None",
" 2. 1-5%",
" 3. 6-10%",
" 4. 11-25%",
" 5. 26-50%",
" 6. 51-75%",
" 7. 76-90%",
" 8. Over 90%"
)
stdCoefREF <- c(
" coef se t dof Pr(>|t|) stdCoef stdSE",
"(Intercept) 270.411 1.0244 263.961 54.67 0.000e+00 NA NA",
"dsexFemale -2.959 0.6042 -4.896 54.99 8.947e-06 -0.04070 0.008412",
"b017451Once every few weeks 4.233 1.1833 3.578 57.32 7.131e-04 0.04576 0.012902",
"b017451About once a week 11.226 1.2585 8.920 54.68 2.983e-12 0.11752 0.013753",
"b0174512 or 3 times a week 14.946 1.1866 12.595 72.58 0.000e+00 0.16595 0.013147",
"b017451Every day 7.530 1.3085 5.755 48.47 5.755e-07 0.08172 0.014526"
)
rq1REF <- c(
"",
"Formula: composite ~ dsex + b017451",
"",
"tau: 0.8",
"jrrIMax: 1",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16331",
"",
"Coefficients:",
" coef se t dof Pr(>|t|) ",
"(Intercept) 299.77 1.81 165.59 29.4 < 2e-16 ***",
"dsexFemale -4.63 1.29 -3.59 58.6 0.00069 ***",
"b017451Once every few weeks 6.59 1.91 3.45 46.0 0.00120 ** ",
"b017451About once a week 12.48 2.30 5.44 67.8 8.0e-07 ***",
"b0174512 or 3 times a week 16.54 2.46 6.72 29.9 1.9e-07 ***",
"b017451Every day 12.74 1.69 7.53 50.3 8.7e-10 ***",
"---",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
)
rq1SREF <- c(
"",
"Formula: composite ~ dsex + b017451",
"",
"tau: 0.8",
"jrrIMax: 1",
"Weight variable: ‘origwt’",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16331",
"",
"Coefficients:",
" coef se t dof Pr(>|t|) ",
"(Intercept) 299.7680 1.8103 165.5883 29.389 < 2.2e-16 ***",
"dsexFemale -4.6280 1.2908 -3.5852 58.617 0.0006868 ***",
"b017451Once every few weeks 6.5880 1.9086 3.4518 46.045 0.0012041 ** ",
"b017451About once a week 12.4800 2.2959 5.4359 67.782 8.032e-07 ***",
"b0174512 or 3 times a week 16.5420 2.4616 6.7201 29.867 1.943e-07 ***",
"b017451Every day 12.7420 1.6932 7.5253 50.343 8.717e-10 ***",
"---",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
)
rq2REF <- c(
" (Intercept) dsexFemale b017451Once every few weeks b017451About once a week b0174512 or 3 times a week b017451Every day ",
" 299.43 -4.63 7.29 13.15 17.02 13.12 "
)
rq2SREF <- c(
"",
"Formula: mrpcm1 ~ dsex + b017451",
"",
"tau: 0.8",
"Weight variable: 'origwt'",
"Variance method: jackknife",
"JK replicates: 62",
"full data n: 17606",
"n used: 16331",
"",
"Coefficients:",
" coef se t dof Pr(>|t|) ",
"(Intercept) 299.4300 1.6469 181.8103 29.389 < 2.2e-16 ***",
"dsexFemale -4.6300 1.1182 -4.1405 58.617 0.0001125 ***",
"b017451Once every few weeks 7.2900 1.8336 3.9758 46.045 0.0002456 ***",
"b017451About once a week 13.1500 2.2236 5.9137 67.782 1.213e-07 ***",
"b0174512 or 3 times a week 17.0200 2.3063 7.3798 29.867 3.286e-08 ***",
"b017451Every day 13.1200 1.4556 9.0134 50.343 4.420e-12 ***",
"---",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
)
logit2tREF <- c(
"", "Formula: iep ~ dsex + b013801", "Family: binomial (logit)",
"",
"Weight variable: 'origwt'", "Variance method: Taylor series",
"full data n: 17606", "n used: 16294", "", "Coefficients:",
" coef se t dof Pr(>|t|) ",
"(Intercept) -3.78974 0.14463 -26.20351 34.236 <2e-16 ***",
"dsexFemale -0.15327 0.13700 -1.11876 34.852 0.2709 ",
"b01380111-25 0.14963 0.16470 0.90851 59.574 0.3673 ",
"b01380126-100 -0.22653 0.16072 -1.40948 47.152 0.1653 ",
"b013801>100 0.14767 0.21253 0.69482 29.369 0.4926 ",
"---",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
)
assignTableREF <- structure(c(8486L, 0L, 0L, 8429L),
.Dim = c(2L, 2L),
.Dimnames = structure(
list(
c("Male", "Female"),
c("Male", "Female")
),
.Names = c("", "")
), class = "table"
)
sum2ResBREF <- c(
"Estimates are weighted using the weight variable 'origwt'",
" dsex pared N Weighted N Weighted Percent Weighted Percent SE",
"1 Male Did not finish H.S. 539 593.2 6.968 0.392",
"2 Male Graduated H.S. 1461 1490.4 17.510 0.673",
"3 Male Some ed after H.S. 1383 1449.4 17.028 0.556",
"4 Male Graduated college 3775 3769.9 44.289 0.931",
"5 Male I Don't Know 996 1082.1 12.713 0.543",
"6 Male Omitted 326 124.3 1.460 0.155",
"7 Male Multiple 6 2.7 0.031 0.015",
"8 Female Did not finish H.S. 741 821.4 9.754 0.522",
"9 Female Graduated H.S. 1630 1688.9 20.057 0.619",
"10 Female Some ed after H.S. 1522 1513.3 17.972 0.470",
"11 Female Graduated college 3490 3471.1 41.222 0.928",
"12 Female I Don't Know 791 854.0 10.142 0.515",
"13 Female Omitted 251 65.4 0.777 0.131",
"14 Female Multiple 4 6.4 0.076 0.042"
)
mmlIntREF <- c(
" (Intercept) Population SD ",
" 279.64 33.96 "
)
mmlSumREF <- c(
"Call:",
"mml.sdf(formula = algebra ~ 1, data = subset(sdf, dsex == \"Female\"), ",
" weightVar = \"origwt\", verbose = TRUE)",
"Summary Call:",
"summary.mml.sdf(object = mmlNAEP)",
"",
"Summary:",
" Estimate StdErr t.value dof Pr(>|t|) ",
"(Intercept) 279.64 0.95 294.43 40.5 <2e-16 ***",
"---",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1",
"",
"Residual Variance Estimate:",
" Estimate StdErr",
"Population SD 33.96 0.7122",
"",
"Convergence = converged",
"Iterations = 11",
"LogLike = -35401.05",
"Observations = 8237",
"Weighted observations = 8226.97"
)
mmlDsexIntREF <- c(
" (Intercept) dsexFemale Population SD ",
" 279.23 0.34 34.85 "
)
pdf_estREF <- c(
"% LaTeX script for EdSurvey Table:",
"\\begin{table}[ht]",
"\\centering",
"\\begin{tabular}{lll}",
" \\hline",
"Talk about studies at home & Male & Female \\\\ ",
" \\hline",
"Never or hardly ever & 29.01 (0.696) & 18.20 (0.508) \\\\ ",
" Once every few weeks & 19.52 (0.502) & 18.62 (0.489) \\\\ ",
" About once a week & 16.96 (0.506) & 18.16 (0.578) \\\\ ",
" 2 or 3 times a week & 18.63 (0.481) & 29.01 (0.696) \\\\ ",
" Every day & 15.88 (0.587) & 29.01 (0.696) \\\\ ",
" \\hline",
"\\end{tabular}",
"\\end{table}"
)
lm10_head <-
list(formula = composite ~ dsex + b017451, coef = c(`(Intercept)` = 270.411120956747,
dsexFemale = -2.95857830863405, `b017451Once every few weeks` = 4.23341438050276,
`b017451About once a week` = 11.2261231533783, `b0174512 or 3 times a week` = 14.9459085095952,
`b017451Every day` = 7.52998369846192), se = c(`(Intercept)` = 1.02443397803618,
dsexFemale = 0.604228514050488, `b017451Once every few weeks` = 1.18326707469577,
`b017451About once a week` = 1.25853689767647, `b0174512 or 3 times a week` = 1.18664605765311,
`b017451Every day` = 1.3084557511019), Vimp = c(`(Intercept)` = 0.0317123088999927,
dsexFemale = 0.0118044139976679, `b017451Once every few weeks` = 0.115883064314653,
`b017451About once a week` = 0.249949470571965, `b0174512 or 3 times a week` = 0.0621448682665872,
`b017451Every day` = 0.216972364588427), Vjrr = c(`(Intercept)` = 1.01775266645504,
dsexFemale = 0.353287683193993, `b017451Once every few weeks` = 1.28423790574442,
`b017451About once a week` = 1.33396565224115, `b0174512 or 3 times a week` = 1.34598399787709,
`b017451Every day` = 1.4950840880032), M = 5L, varm = structure(c(1.01775266645504,
0.353287683193993, 1.28423790574442, 1.33396565224115, 1.34598399787709,
1.4950840880032), dim = c(1L, 6L)), coefm = structure(c(270.299026109663,
270.3698547706, 270.358978287715, 270.697727097624, 270.330018518134,
-2.93888691554455, -3.03862500768519, -2.82749375810408, -3.0741562379871,
-2.91372962384933, 4.38903707262901, 4.32933570873935, 3.8893149993103,
3.9404503137907, 4.61893380804442, 11.4467530795666, 11.2824696023128,
11.5962902897723, 10.4362406942504, 11.3688621009895, 15.3123206803453,
14.9766415511688, 14.8990230698195, 14.7059405034579, 14.8356167431845,
7.99325875545627, 7.40171989229546, 7.73429696289416, 6.8698176274791,
7.65082525418462), dim = 5:6, dimnames = list(NULL, c("(Intercept)",
"dsexFemale", "b017451Once every few weeks", "b017451About once a week",
"b0174512 or 3 times a week", "b017451Every day"))), coefmat = structure(list(
coef = c(270.411120956747, -2.95857830863405, 4.23341438050276,
11.2261231533783, 14.9459085095952, 7.52998369846192), se = c(1.02443397803618,
0.604228514050488, 1.18326707469577, 1.25853689767647, 1.18664605765311,
1.3084557511019), t = c(263.961491666959, -4.89645595968488,
3.57773360810468, 8.91997936183212, 12.5950854622603, 5.75486308354001
), dof = c(54.6700206144557, 54.9911209627616, 57.3160571925223,
54.6832034093795, 72.5820287251234, 48.4697539222567), `Pr(>|t|)` = c(0,
8.94739811057101e-06, 0.00071311498547777, 2.98339131177272e-12,
0, 5.75502820066021e-07)), row.names = c("(Intercept)", "dsexFemale",
"b017451Once every few weeks", "b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"), class = "data.frame"), r.squared = 0.0223931751818003,
weight = "origwt", npv = 5L, jrrIMax = 1, njk = 62L, varMethod = "jackknife",
residuals = structure(c(40.0688953447908, 9.75133419850852,
67.7374736534249, 70.8188953447908, 6.75404297138402, 42.5929705336575,
25.7388953447908, 5.25133419850852, 63.0474736534248, 43.8488953447908,
-26.605957028616, 53.2329705336575, 18.6688953447908, 1.7713341985085,
54.4974736534249, 49.9288953447908, -8.68595702861597, 42.7129705336575,
51.0288953447908, 11.3513341985085, 77.4774736534249, 55.4088953447908,
5.81404297138403, 48.7129705336575, 37.7588953447908, 7.55133419850853,
67.2774736534249, 49.3788953447908, 13.354042971384, 34.6629705336575
), dim = 6:5), fitted.values = c(277.941104655209, 278.678665801491,
274.982526346575, 277.941104655209, 271.685957028616, 285.357029466342
), residual.df = 16325L, PV.residuals = structure(c(39.7177151348806,
9.62310772631491, 67.3666020504252, 70.4677151348806, 6.69082373325244,
42.3386532099916, 25.9084253371047, 5.31630063477252, 63.2970503447899,
44.0184253371047, -26.580565471654, 53.2435036782313, 18.5167247493907,
1.32222518061661, 54.2142185074948, 49.7767247493907, -8.42079952892141,
42.8119986424654, 51.4024552748965, 11.9701884461122, 77.9666115128836,
55.7824552748965, 5.93597882657201, 48.6663323989176, 37.7191562276816,
7.44484900472605, 67.1928858515309, 49.3391562276816, 13.0047772976712,
34.8543647386817), dim = 6:5), PV.fitted.values = structure(c(278.292284865119,
278.806892273685, 275.353397949575, 278.292284865119, 271.749176266748,
285.611346790008, 277.771574662895, 278.613699365227, 274.73294965521,
277.771574662895, 271.660565471654, 285.346496321769, 278.093275250609,
279.127774819383, 275.265781492505, 278.093275250609, 271.420799528921,
285.258001357535, 277.567544725104, 278.059811553888, 274.493388487116,
277.567544725104, 271.564021173428, 285.403667601082, 277.980843772318,
278.785150995274, 275.067114148469, 277.980843772318, 272.035222702329,
285.165635261318), dim = 6:5), B = structure(c(0.0264269240833273,
-0.0106254655135796, -0.029673103849521, -0.0710799558654692,
-0.0249319481634757, -0.0640748555734966, -0.0106254655135796,
0.00983701166472321, 0.000357587169684912, 0.0365129972962016,
0.00534942383801708, 0.031973037584361, -0.029673103849521,
0.000357587169684912, 0.0965692202622109, 0.0497003453877256,
0.0259714094329351, 0.0573701283243995, -0.0710799558654692,
0.0365129972962016, 0.0497003453877256, 0.208291225476638,
0.0597553317741062, 0.177329395929916, -0.0249319481634757,
0.00534942383801708, 0.0259714094329351, 0.0597553317741062,
0.051787390222156, 0.0753298180705498, -0.0640748555734966,
0.031973037584361, 0.0573701283243995, 0.177329395929916,
0.0753298180705498, 0.180810303823689), dim = c(6L, 6L), dimnames = list(
c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"), c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"))), U = structure(c(1.01775266645504,
-0.0539588947946272, -0.68525863004781, -0.466713890727058,
-0.428898034193583, -0.568765736440115, -0.0539588947946272,
0.353287683193993, -0.134920749671854, -0.0520955931471992,
-0.0159324173319144, -0.11263633925747, -0.68525863004781,
-0.134920749671854, 1.28423790574442, 0.736185103282417,
0.594797632018768, 0.686080650535171, -0.466713890727058,
-0.0520955931471992, 0.736185103282417, 1.33396565224115,
0.63980493976393, 0.729477596903082, -0.428898034193583,
-0.0159324173319144, 0.594797632018768, 0.63980493976393,
1.34598399787709, 0.4810029673653, -0.568765736440115, -0.11263633925747,
0.686080650535171, 0.729477596903082, 0.4810029673653, 1.4950840880032
), dim = c(6L, 6L), dimnames = list(c("(Intercept)", "dsexFemale",
"b017451Once every few weeks", "b017451About once a week",
"b0174512 or 3 times a week", "b017451Every day"), c("(Intercept)",
"dsexFemale", "b017451Once every few weeks", "b017451About once a week",
"b0174512 or 3 times a week", "b017451Every day"))), rbar = 0.0857835117931858,
Ttilde = structure(c(1.10505906432044, -0.0585876782825894,
-0.744042521819899, -0.506750247276286, -0.465690413767903,
-0.617556458699585, -0.0585876782825894, 0.383593941331652,
-0.146494725392475, -0.056564536076315, -0.0172991560420006,
-0.122298679994505, -0.744042521819899, -0.146494725392475,
1.39440434327711, 0.799337646771812, 0.645821461699609, 0.744935058111432,
-0.506750247276286, -0.056564536076315, 0.799337646771812,
1.44839791050188, 0.694689654359507, 0.792054746939883, -0.465690413767903,
-0.0172991560420006, 0.645821461699609, 0.694689654359507,
1.46144723203242, 0.522265091088839, -0.617556458699585,
-0.122298679994505, 0.744935058111432, 0.792054746939883,
0.522265091088839, 1.62333765149823), dim = c(6L, 6L), dimnames = list(
c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"), c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"))), waldDenomBaseDof = 63, n0 = 17606L,
nUsed = 16331L, Xstdev = list(outcome.std = 36.3450748753527,
`(Intercept)` = 0, dsexFemale = 0.500012547576328, `b017451Once every few weeks` = 0.392880957783438,
`b017451About once a week` = 0.380480563361107, `b0174512 or 3 times a week` = 0.403543023481001),
varSummary = list(structure(list(summary = structure(list(
Variable = c("mrpcm1", "mrpcm2", "mrpcm3", "mrpcm4",
"mrpcm5"), N = c(16331, 16331, 16331, 16331, 16331),
Min. = c(130.53, 124.16, 115.09, 137.19, 123.58), `1st Qu.` = c(252.451666666667,
252.691666666667, 252.371666666667, 252.815, 252.86),
Median = c(277.5, 277.5, 277.47, 277.64, 277.33), Mean = c(276.139280509461,
275.92952544241, 275.934778029514, 276.016936501133,
275.980287796216), `3rd Qu.` = c(300.798333333333, 300.76,
300.678333333333, 300.828333333333, 300.61), Max. = c(410.8,
408.58, 398.17, 407.41, 395.96), SD = c(35.694086381693,
35.8508676252172, 35.9087308785062, 35.7219798072453,
35.8801154841422), `NA's` = c(0, 0, 0, 0, 0)), class = "data.frame", row.names = c(NA,
-5L))), class = "summary2"), structure(list(summary = structure(list(
dsex = structure(1:2, levels = c("Male", "Female"), class = "factor"),
N = c(8163L, 8168L), Percent = c(49.9846916906497, 50.0153083093503
)), row.names = c(NA, -2L), class = "data.frame")), class = "summary2"),
structure(list(summary = structure(list(b017451 = structure(1:5, levels = c("Never or hardly ever",
"Once every few weeks", "About once a week", "2 or 3 times a week",
"Every day"), class = "factor"), N = c(3837L, 3147L,
2853L, 3362L, 3132L), Percent = c(23.495193190864, 19.270099810177,
17.4698426305799, 20.5866144143041, 19.1782499540751)), row.names = c(NA,
-5L), class = "data.frame")), class = "summary2")))
lm1_head <- list(formula = composite ~ dsex + b017451, coef = c(`(Intercept)` = 270.411120956747,
dsexFemale = -2.95857830863405, `b017451Once every few weeks` = 4.23341438050276,
`b017451About once a week` = 11.2261231533783, `b0174512 or 3 times a week` = 14.9459085095952,
`b017451Every day` = 7.52998369846192), se = c(`(Intercept)` = 1.02443397803618,
dsexFemale = 0.604228514050488, `b017451Once every few weeks` = 1.18326707469577,
`b017451About once a week` = 1.25853689767647, `b0174512 or 3 times a week` = 1.18664605765311,
`b017451Every day` = 1.3084557511019), Vimp = c(`(Intercept)` = 0.0317123088999927,
dsexFemale = 0.0118044139976679, `b017451Once every few weeks` = 0.115883064314653,
`b017451About once a week` = 0.249949470571965, `b0174512 or 3 times a week` = 0.0621448682665872,
`b017451Every day` = 0.216972364588427), Vjrr = c(`(Intercept)` = 1.01775266645504,
dsexFemale = 0.353287683193993, `b017451Once every few weeks` = 1.28423790574442,
`b017451About once a week` = 1.33396565224115, `b0174512 or 3 times a week` = 1.34598399787709,
`b017451Every day` = 1.4950840880032), M = 5L, varm = structure(c(1.01775266645504,
0.353287683193993, 1.28423790574442, 1.33396565224115, 1.34598399787709,
1.4950840880032), dim = c(1L, 6L)), coefm = structure(c(270.299026109663,
270.3698547706, 270.358978287715, 270.697727097624, 270.330018518134,
-2.93888691554455, -3.03862500768519, -2.82749375810408, -3.0741562379871,
-2.91372962384933, 4.38903707262901, 4.32933570873935, 3.8893149993103,
3.9404503137907, 4.61893380804442, 11.4467530795666, 11.2824696023128,
11.5962902897723, 10.4362406942504, 11.3688621009895, 15.3123206803453,
14.9766415511688, 14.8990230698195, 14.7059405034579, 14.8356167431845,
7.99325875545627, 7.40171989229546, 7.73429696289416, 6.8698176274791,
7.65082525418462), dim = 5:6, dimnames = list(NULL, c("(Intercept)",
"dsexFemale", "b017451Once every few weeks", "b017451About once a week",
"b0174512 or 3 times a week", "b017451Every day"))), coefmat = structure(list(
coef = c(270.411120956747, -2.95857830863405, 4.23341438050276,
11.2261231533783, 14.9459085095952, 7.52998369846192), se = c(1.02443397803618,
0.604228514050488, 1.18326707469577, 1.25853689767647, 1.18664605765311,
1.3084557511019), t = c(263.961491666959, -4.89645595968488,
3.57773360810468, 8.91997936183212, 12.5950854622603, 5.75486308354001
), dof = c(54.6700206144557, 54.9911209627616, 57.3160571925223,
54.6832034093795, 72.5820287251234, 48.4697539222567), `Pr(>|t|)` = c(0,
8.94739811057101e-06, 0.00071311498547777, 2.98339131177272e-12,
0, 5.75502820066021e-07)), row.names = c("(Intercept)", "dsexFemale",
"b017451Once every few weeks", "b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"), class = "data.frame"), r.squared = 0.0223931751818003,
weight = "origwt", npv = 5L, jrrIMax = 1, njk = 62L, varMethod = "jackknife",
residuals = structure(c(40.0688953447908, 9.75133419850852,
67.7374736534249, 70.8188953447908, 6.75404297138402, 42.5929705336575,
25.7388953447908, 5.25133419850852, 63.0474736534248, 43.8488953447908,
-26.605957028616, 53.2329705336575, 18.6688953447908, 1.7713341985085,
54.4974736534249, 49.9288953447908, -8.68595702861597, 42.7129705336575,
51.0288953447908, 11.3513341985085, 77.4774736534249, 55.4088953447908,
5.81404297138403, 48.7129705336575, 37.7588953447908, 7.55133419850853,
67.2774736534249, 49.3788953447908, 13.354042971384, 34.6629705336575
), dim = 6:5), fitted.values = c(277.941104655209, 278.678665801491,
274.982526346575, 277.941104655209, 271.685957028616, 285.357029466342
), residual.df = 16325L, PV.residuals = structure(c(39.7177151348806,
9.62310772631491, 67.3666020504252, 70.4677151348806, 6.69082373325244,
42.3386532099916, 25.9084253371047, 5.31630063477252, 63.2970503447899,
44.0184253371047, -26.580565471654, 53.2435036782313, 18.5167247493907,
1.32222518061661, 54.2142185074948, 49.7767247493907, -8.42079952892141,
42.8119986424654, 51.4024552748965, 11.9701884461122, 77.9666115128836,
55.7824552748965, 5.93597882657201, 48.6663323989176, 37.7191562276816,
7.44484900472605, 67.1928858515309, 49.3391562276816, 13.0047772976712,
34.8543647386817), dim = 6:5), PV.fitted.values = structure(c(278.292284865119,
278.806892273685, 275.353397949575, 278.292284865119, 271.749176266748,
285.611346790008, 277.771574662895, 278.613699365227, 274.73294965521,
277.771574662895, 271.660565471654, 285.346496321769, 278.093275250609,
279.127774819383, 275.265781492505, 278.093275250609, 271.420799528921,
285.258001357535, 277.567544725104, 278.059811553888, 274.493388487116,
277.567544725104, 271.564021173428, 285.403667601082, 277.980843772318,
278.785150995274, 275.067114148469, 277.980843772318, 272.035222702329,
285.165635261318), dim = 6:5), B = structure(c(0.0264269240833273,
-0.0106254655135796, -0.029673103849521, -0.0710799558654692,
-0.0249319481634757, -0.0640748555734966, -0.0106254655135796,
0.00983701166472321, 0.000357587169684912, 0.0365129972962016,
0.00534942383801708, 0.031973037584361, -0.029673103849521,
0.000357587169684912, 0.0965692202622109, 0.0497003453877256,
0.0259714094329351, 0.0573701283243995, -0.0710799558654692,
0.0365129972962016, 0.0497003453877256, 0.208291225476638,
0.0597553317741062, 0.177329395929916, -0.0249319481634757,
0.00534942383801708, 0.0259714094329351, 0.0597553317741062,
0.051787390222156, 0.0753298180705498, -0.0640748555734966,
0.031973037584361, 0.0573701283243995, 0.177329395929916,
0.0753298180705498, 0.180810303823689), dim = c(6L, 6L), dimnames = list(
c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"), c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"))), U = structure(c(1.01775266645504,
-0.0539588947946272, -0.68525863004781, -0.466713890727058,
-0.428898034193583, -0.568765736440115, -0.0539588947946272,
0.353287683193993, -0.134920749671854, -0.0520955931471992,
-0.0159324173319144, -0.11263633925747, -0.68525863004781,
-0.134920749671854, 1.28423790574442, 0.736185103282417,
0.594797632018768, 0.686080650535171, -0.466713890727058,
-0.0520955931471992, 0.736185103282417, 1.33396565224115,
0.63980493976393, 0.729477596903082, -0.428898034193583,
-0.0159324173319144, 0.594797632018768, 0.63980493976393,
1.34598399787709, 0.4810029673653, -0.568765736440115, -0.11263633925747,
0.686080650535171, 0.729477596903082, 0.4810029673653, 1.4950840880032
), dim = c(6L, 6L), dimnames = list(c("(Intercept)", "dsexFemale",
"b017451Once every few weeks", "b017451About once a week",
"b0174512 or 3 times a week", "b017451Every day"), c("(Intercept)",
"dsexFemale", "b017451Once every few weeks", "b017451About once a week",
"b0174512 or 3 times a week", "b017451Every day"))), rbar = 0.0857835117931858,
Ttilde = structure(c(1.10505906432044, -0.0585876782825894,
-0.744042521819899, -0.506750247276286, -0.465690413767903,
-0.617556458699585, -0.0585876782825894, 0.383593941331652,
-0.146494725392475, -0.056564536076315, -0.0172991560420006,
-0.122298679994505, -0.744042521819899, -0.146494725392475,
1.39440434327711, 0.799337646771812, 0.645821461699609, 0.744935058111432,
-0.506750247276286, -0.056564536076315, 0.799337646771812,
1.44839791050188, 0.694689654359507, 0.792054746939883, -0.465690413767903,
-0.0172991560420006, 0.645821461699609, 0.694689654359507,
1.46144723203242, 0.522265091088839, -0.617556458699585,
-0.122298679994505, 0.744935058111432, 0.792054746939883,
0.522265091088839, 1.62333765149823), dim = c(6L, 6L), dimnames = list(
c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"), c("(Intercept)", "dsexFemale", "b017451Once every few weeks",
"b017451About once a week", "b0174512 or 3 times a week",
"b017451Every day"))), waldDenomBaseDof = 63, n0 = 17606L,
nUsed = 16331L, Xstdev = list(outcome.std = 36.3450748753527,
`(Intercept)` = 0, dsexFemale = 0.500012547576328, `b017451Once every few weeks` = 0.392880957783438,
`b017451About once a week` = 0.380480563361107, `b0174512 or 3 times a week` = 0.403543023481001),
varSummary = list(structure(list(summary = structure(list(
Variable = c("mrpcm1", "mrpcm2", "mrpcm3", "mrpcm4",
"mrpcm5"), N = c(16331, 16331, 16331, 16331, 16331),
Min. = c(130.53, 124.16, 115.09, 137.19, 123.58), `1st Qu.` = c(252.451666666667,
252.691666666667, 252.371666666667, 252.815, 252.86),
Median = c(277.5, 277.5, 277.47, 277.64, 277.33), Mean = c(276.139280509461,
275.92952544241, 275.934778029514, 276.016936501133,
275.980287796216), `3rd Qu.` = c(300.798333333333, 300.76,
300.678333333333, 300.828333333333, 300.61), Max. = c(410.8,
408.58, 398.17, 407.41, 395.96), SD = c(35.694086381693,
35.8508676252172, 35.9087308785062, 35.7219798072453,
35.8801154841422), `NA's` = c(0, 0, 0, 0, 0)), class = "data.frame", row.names = c(NA,
-5L))), class = "summary2"), structure(list(summary = structure(list(
dsex = structure(1:2, levels = c("Male", "Female"), class = "factor"),
N = c(8163L, 8168L), Percent = c(49.9846916906497, 50.0153083093503
)), row.names = c(NA, -2L), class = "data.frame")), class = "summary2"),
structure(list(summary = structure(list(b017451 = structure(1:5, levels = c("Never or hardly ever",
"Once every few weeks", "About once a week", "2 or 3 times a week",
"Every day"), class = "factor"), N = c(3837L, 3147L,
2853L, 3362L, 3132L), Percent = c(23.495193190864, 19.270099810177,
17.4698426305799, 20.5866144143041, 19.1782499540751)), row.names = c(NA,
-5L), class = "data.frame")), class = "summary2")))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.