EffectTreat: Prediction of Therapeutic Success

In personalized medicine, one wants to know, for a given patient and his or her outcome for a predictor (pre-treatment variable), how likely it is that a treatment will be more beneficial than an alternative treatment. This package allows for the quantification of the predictive causal association (i.e., the association between the predictor variable and the individual causal effect of the treatment) and related metrics. Part of this software has been developed using funding provided from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.

Getting started

Package details

AuthorWim Van der Elst, Ariel Alonso & Geert Molenberghs
MaintainerWim Van der Elst <Wim.vanderelst@gmail.com>
LicenseGPL (>= 2)
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the EffectTreat package in your browser

Any scripts or data that you put into this service are public.

EffectTreat documentation built on July 8, 2020, 7:17 p.m.