Predict.Treat.T0T1ContCont: Compute the predicted treatment effect on the true endpoint...

Description Usage Arguments Value Author(s) References See Also Examples

Description

This function computes the predicted Δ T_j of a patient based on the pretreatment value S_j of a patient in the continuous-continuous setting for a particular (single) value of rho_T0T1.

Usage

1
Predict.Treat.T0T1.ContCont(x, S, Beta, SS, mu_S, T0T1, alpha=0.05)

Arguments

x

An object of class PCA.ContCont. See PCA.ContCont.

S

The observed pretreatment value S_j for a patient.

Beta

The estimated treatment effect on the true endpoint (in the validation sample).

SS

The estimated variance of the pretreatment predictor endpoint.

mu_S

The estimated mean of the surrogate endpoint (in the validation sample).

T0T1

The ρ_{T0T1} value (used to compute the variance of Δ T_j|S_j.

alpha

The α-level that is used to determine the confidence interval around Δ T_j|S_j. Default 0.05.

Value

An object of class PCA.Predict.Treat.T0T1.ContCont with components,

Pred_T

The predicted Δ T_j.

Var_Delta.T

The variance σ_{Δ_{T}}.

T0T1

The correlation between the counterfactuals T_{0}, T_{1}.

CI_low

The lower border of the 1-α% confidence interval of Δ T_j|S_j.

CI_high

The upper border of the 1-α% confidence interval of Δ T_j|S_j.

Var_Delta.T_S

The variance σ_{Δ_{T}}|S_j.

alpha

The α-level that is used to determine the confidence interval of Δ T_j|S_j.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.

See Also

PCA.ContCont

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# Generate the vector of PCA.ContCont values when rho_T0S=.3, rho_T1S=.9, 
# sigma_T0T0=2, sigma_T1T1=2,sigma_SS=2, and the grid of values {-1, -.99, 
# ..., 1} is considered for the correlations between T0 and T1:
PCA <- PCA.ContCont(T0S=.3, T1S=.9, T0T0=2, T1T1=2, SS=2, 
T0T1=seq(-1, 1, by=.01))

# Obtain the predicted value T for a patient who scores S = 10, using beta=5,
# SS=2, mu_S=4, assuming rho_T0T1=.6
indiv <- Predict.Treat.T0T1.ContCont(x=PCA, S=10, Beta=5, SS=2, mu_S=4, T0T1=.6)
summary(indiv)

# obtain a plot with the 95% CI around delta T_j | S_j (assuming rho_T0T1=.6)
plot(indiv)

EffectTreat documentation built on July 8, 2020, 7:17 p.m.