Description Usage Arguments Value Author(s) References Examples
The function Multivar.PCA.ContCont
computes the predictive causal association (PCA) when S = the vector of pretreatment predictors and T = the True endpoint. All S and T should be continuous normally distributed endpoints. See Details below.
1 | Multivar.PCA.ContCont(Sigma_TT, Sigma_TS, Sigma_SS, T0T1=seq(-1, 1, by=.01), M=NA)
|
Sigma_TT |
The variance-covariance matrix \bold{Σ}_{TT}=≤ft(\begin{array}{cc}σ_{T0T0} & σ_{T0T1} \\ σ_{T0T1} & σ_{T1T1}\end{array}\right). |
Sigma_TS |
The matrix that contains the covariances σ_{T0Sr}, σ_{T1Sr}. For example, when there are 2 pretreatment predictors \bold{Σ}_{TS}=≤ft(\begin{array}{cc}σ_{T0S1} & σ_{T0S2} \\ σ_{T1S1} & σ_{T1S2}\end{array}\right). |
Sigma_SS |
The variance-covariance matrix of the pretreatment predictors. For example, when there are 2 pretreatment predictors \bold{Σ}_{SS}=≤ft(\begin{array}{cc}σ_{S1S1} & σ_{S1S2} \\ σ_{S1S2} & σ_{S2S2}\end{array}\right). |
T0T1 |
A scalar or vector that contains the correlation(s) between the counterfactuals T_0 and T_1 that should be considered in the computation of R^2_{ψ}. Default |
M |
If |
An object of class Multivar.PCA.ContCont
with components,
Total.Num.Matrices |
An object of class |
Pos.Def |
A |
PCA |
A scalar or vector that contains the PCA (R^2_{ψ}) value(s). |
R2_psi_g |
A |
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # First specify the covariance matrices to be used
Sigma_TT = matrix(c(177.870, NA, NA, 162.374), byrow=TRUE, nrow=2)
Sigma_TS = matrix(data = c(-45.140, -109.599, 11.290, -56.542,
-106.897, 20.490), byrow = TRUE, nrow = 2)
Sigma_SS = matrix(data=c(840.564, 73.936, -3.333, 73.936, 357.719,
-30.564, -3.333, -30.564, 95.063), byrow = TRUE, nrow = 3)
# Compute PCA
Results <- Multivar.PCA.ContCont(Sigma_TT = Sigma_TT,
Sigma_TS = Sigma_TS, Sigma_SS = Sigma_SS)
# Evaluate results
summary(Results)
plot(Results)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.