Description Usage Arguments Author(s) References Examples
View source: R/Min.Max.Multivar.PCA.R
The function Min.Max.Multivar.PCA
computes the minimum and maximum values for the multivariate predictive causal association (PCA) in the continuous-continuous case.
1 | Min.Max.Multivar.PCA(gamma, Sigma_SS, Sigma_T0T0, Sigma_T1T1)
|
gamma |
The vector of regression coefficients for the S by treatment interactions. |
Sigma_SS |
The variance-covariance matrix of the pretreatment predictors. For example, when there are 2 pretreatment predictors \bold{Σ}_{SS}=≤ft(\begin{array}{cc}σ_{S1S1} & σ_{S1S2} \\ σ_{S1S2} & σ_{S2S2}\end{array}\right). |
Sigma_T0T0 |
The variance of T in the control treatment group. |
Sigma_T1T1 |
The variance of T in the experimental treatment group. |
Wim Van der Elst & Ariel Alonso
Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
1 2 3 4 5 6 7 8 9 10 11 12 | # Specify vector of S by treatment interaction coefficients
gamma <- matrix(data = c(-0.006, -0.002, 0.045), ncol=1)
# Specify variances
Sigma_SS = matrix(data=c(882.352, 49.234, 6.420,
49.234, 411.964, -26.205, 6.420, -26.205, 95.400),
byrow = TRUE, nrow = 3)
Sigma_T0T0 <- 82.274
Sigma_T1T1 <- 96.386
# Compute min and max PCA
Min.Max.Multivar.PCA(gamma=gamma, Sigma_SS=Sigma_SS,
Sigma_T0T0=Sigma_T0T0, Sigma_T1T1=Sigma_T1T1)
|
Min PCA: 0.0006419669
Max PCA: 0.4102911
$Call
Min.Max.Multivar.PCA(gamma = gamma, Sigma_SS = Sigma_SS, Sigma_T0T0 = Sigma_T0T0,
Sigma_T1T1 = Sigma_T1T1)
attr(,"class")
[1] "Min.Max.Multivar.PCA"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.