Min.Max.Multivar.PCA: Minimum and maximum values for the multivariate predictive...

Description Usage Arguments Author(s) References Examples

View source: R/Min.Max.Multivar.PCA.R

Description

The function Min.Max.Multivar.PCA computes the minimum and maximum values for the multivariate predictive causal association (PCA) in the continuous-continuous case.

Usage

1
Min.Max.Multivar.PCA(gamma, Sigma_SS, Sigma_T0T0, Sigma_T1T1)

Arguments

gamma

The vector of regression coefficients for the S by treatment interactions.

Sigma_SS

The variance-covariance matrix of the pretreatment predictors. For example, when there are 2 pretreatment predictors \bold{Σ}_{SS}=≤ft(\begin{array}{cc}σ_{S1S1} & σ_{S1S2} \\ σ_{S1S2} & σ_{S2S2}\end{array}\right).

Sigma_T0T0

The variance of T in the control treatment group.

Sigma_T1T1

The variance of T in the experimental treatment group.

Author(s)

Wim Van der Elst & Ariel Alonso

References

Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# Specify vector of S by treatment interaction coefficients 
gamma <- matrix(data = c(-0.006, -0.002, 0.045), ncol=1)
# Specify variances
Sigma_SS = matrix(data=c(882.352, 49.234, 6.420,
49.234, 411.964, -26.205, 6.420, -26.205, 95.400),
byrow = TRUE, nrow = 3)
Sigma_T0T0 <- 82.274
Sigma_T1T1 <- 96.386

# Compute min and max PCA
Min.Max.Multivar.PCA(gamma=gamma, Sigma_SS=Sigma_SS, 
Sigma_T0T0=Sigma_T0T0, Sigma_T1T1=Sigma_T1T1)

Example output

 
Min PCA:  0.0006419669
 
Max PCA:  0.4102911 
 
$Call
Min.Max.Multivar.PCA(gamma = gamma, Sigma_SS = Sigma_SS, Sigma_T0T0 = Sigma_T0T0, 
    Sigma_T1T1 = Sigma_T1T1)

attr(,"class")
[1] "Min.Max.Multivar.PCA"

EffectTreat documentation built on July 8, 2020, 7:17 p.m.