Description Usage Arguments Author(s) References Examples
Computes the minimum R^2_{δ} needed to achieve the desired prediction accuracy for the set of pretreatment predictors.
1 | Min.R2.delta(delta, Sigma_T0T0, Sigma_T1T1)
|
delta |
The vector of δ values to be considered. |
Sigma_T0T0 |
The variance of T in the control treatment group. |
Sigma_T1T1 |
The variance of T in the experimental treatment group. |
Wim Van der Elst, Ariel Alonso & Geert Molenberghs
Alonso, A., Van der Elst, W., Luaces, P., Sanchez, L., & Molenberghs, G. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
1 2 3 4 5 6 | Fit <- Min.R2.delta(delta = seq(from = 0, to = 250, by=50),
Sigma_T0T0 = 38.606, Sigma_T1T1 = 663.917)
# Explore the results
summary(Fit)
plot(Fit)
|
Function call:
Min.R2.delta(delta = seq(from = 0, to = 250, by = 50), Sigma_T0T0 = 38.606,
Sigma_T1T1 = 663.917)
# R2_delta for different delta's:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
delta R^2_delta
1 0 1.0000000
2 50 0.9511107
3 100 0.9022213
4 150 0.8533320
5 200 0.8044426
6 250 0.7555533
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.