Description Usage Arguments Value Author(s) References See Also Examples
View source: R/Predict.Treat.Multivar.ContCont.R
This function computes the predicted Δ T_j of a patient based on the vector of pretreatment values \bold{S}_j of a patient in the continuous-continuous setting.
1 2 | Predict.Treat.Multivar.ContCont(Sigma_TT, Sigma_TS, Sigma_SS, Beta,
S, mu_S, T0T1=seq(-1, 1, by=.01))
|
Sigma_TT |
The variance-covariance matrix \bold{Σ}_{TT}=≤ft(\begin{array}{cc}σ_{T0T0} & σ_{T0T1} \\ σ_{T0T1} & σ_{T1T1}\end{array}\right). |
Sigma_TS |
The matrix that contains the covariances σ_{T0Sr}, σ_{T1Sr}. For example, when there are 2 pretreatment predictors \bold{Σ}_{TS}=≤ft(\begin{array}{cc}σ_{T0S1} & σ_{T0S2} \\ σ_{T1S1} & σ_{T1S2}\end{array}\right). |
Sigma_SS |
The variance-covariance matrix of the pretreatment predictors. For example, when there are 2 pretreatment predictors \bold{Σ}_{SS}=≤ft(\begin{array}{cc}σ_{S1S1} & σ_{S1S2} \\ σ_{S1S2} & σ_{S2S2}\end{array}\right). |
Beta |
The estimated treatment effect on the true endpoint (in the validation sample). |
S |
The vector of observed pretreatment values \bold{S}_j for a patient. |
mu_S |
The vector of estimated means of the pretreatment predictor (in the validation sample). |
T0T1 |
A scalar or vector that contains the correlation(s) between the counterfactuals T_0 and T_1 that should be considered in the computation of ρ_{ψ}. Default |
An object of class PCA.Predict.Treat.Multivar.ContCont
with components,
Pred_T |
The predicted Δ T_j. |
Var_Delta.T_S |
The variance σ_{Δ_{T}}|S_j. |
T0T1 |
The correlation between the counterfactuals T_{0}, T_{1}. |
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
PCA.ContCont, Multivar.PCA.ContCont
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # Specify the covariance matrices to be used
Sigma_TT = matrix(c(177.870, NA, NA, 162.374), byrow=TRUE, nrow=2)
Sigma_TS = matrix(data = c(-45.140, -109.599, 11.290, -56.542,
-106.897, 20.490), byrow = TRUE, nrow = 2)
Sigma_SS = matrix(data=c(840.564, 73.936, -3.333, 73.936, 357.719,
-30.564, -3.333, -30.564, 95.063), byrow = TRUE, nrow = 3)
# Specify treatment effect (Beta), means of vector S (mu_s), and
# observed pretreatment variable values for patient (S)
Beta <- -0.9581 # treatment effect
mu_S = matrix(c(66.8149, 84.8393, 25.1939), nrow=3) #means S_1--S_3
S = matrix(c(90, 180, 30), nrow=3) # S_1--S_3 values for a patient
# predict Delta_T based on S
Pred_S <- Predict.Treat.Multivar.ContCont(Sigma_TT=Sigma_TT, Sigma_TS=Sigma_TS,
Sigma_SS=Sigma_SS, Beta=Beta, S=S, mu_S=mu_S, T0T1=seq(-1, 1, by=.01))
# Explore results
summary(Pred_S)
plot(Pred_S)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.