computeTraditionalP: Compute the (traditional) p-value

View source: R/EmpiricalCalibrationUsingAsymptotics.R

computeTraditionalPR Documentation

Compute the (traditional) p-value

Description

computeTraditionalP computes the traditional two-sided p-value based on the log of the relative risk and the standard error of the log of the relative risk.

Usage

computeTraditionalP(logRr, seLogRr, twoSided = TRUE, upper = TRUE)

Arguments

logRr

A numeric vector of one or more effect estimates on the log scale

seLogRr

The standard error of the log of the effect estimates. Hint: often the standard error = (log(<lower bound 95 percent confidence interval>) - log(<effect estimate>))/qnorm(0.025)

twoSided

Compute two-sided (TRUE) or one-sided (FALSE) p-value?

upper

If one-sided: compute p-value for upper (TRUE) or lower (FALSE) bound?

Value

The (traditional) p-value.

Examples

data(sccs)
positive <- sccs[sccs$groundTruth == 1, ]
computeTraditionalP(positive$logRr, positive$seLogRr)


EmpiricalCalibration documentation built on Sept. 30, 2024, 9:12 a.m.