plotErrorModel | R Documentation |
plotErrorModel
creates a plot showing the systematic error model.
plotErrorModel(
logRr,
seLogRr,
trueLogRr,
title,
legacy = FALSE,
fileName = NULL
)
logRr |
A numeric vector of effect estimates on the log scale. |
seLogRr |
The standard error of the log of the effect estimates. Hint: often the standard error = (log(<lower bound 95 percent confidence interval>) - log(<effect estimate>))/qnorm(0.025). |
trueLogRr |
The true log relative risk. |
title |
Optional: the main title for the plot |
legacy |
If true, a legacy error model will be fitted, meaning standard deviation is linear on the log scale. If false, standard deviation is assumed to be simply linear. |
fileName |
Name of the file where the plot should be saved, for example 'plot.png'.
See the function |
Creates a plot with the true effect size on the x-axis, and the mean plus and minus the standard deviation shown on the y-axis. Also shown are simple error models fitted at each true relative risk in the input.
A Ggplot object. Use the ggsave
function to save to file.
data <- simulateControls(n = 50 * 3, mean = 0.25, sd = 0.25, trueLogRr = log(c(1, 2, 4)))
plotErrorModel(data$logRr, data$seLogRr, data$trueLogRr)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.