gofOutlier.object | R Documentation |
Objects of S3 class "gofOutlier"
are returned by the EnvStats function
rosnerTest
.
Objects of S3 class "gofOutlier"
are lists that contain
information about the assumed distribution, the test statistics,
the Type I error level, and the number of outliers detected.
Required Components
The following components must be included in a legitimate list of
class "gofOutlier"
.
distribution |
a character string indicating the name of the
assumed distribution (see |
statistic |
a numeric vector with a names attribute containing the names and values of the outlier test statistic for each outlier tested. |
sample.size |
a numeric scalar containing the number of non-missing observations in the sample used for the outlier test. |
parameters |
numeric vector with a names attribute containing
the name(s) and value(s) of the parameter(s) associated with the
test statistic given in the |
alpha |
numeric scalar indicating the Type I error level. |
crit.value |
numeric vector containing the critical values associated with the test for each outlier. |
alternative |
character string indicating the alternative hypothesis. |
method |
character string indicating the name of the outlier test. |
data |
numeric vector containing the data actually used for the outlier test (i.e., the original data without any missing or infinite values). |
data.name |
character string indicating the name of the data object used for the goodness-of-fit test. |
all.stats |
data frame containing all of the results of the test. |
Optional Components
The following component is included when the data object
contains missing (NA
), undefined (NaN
) and/or infinite
(Inf
, -Inf
) values.
bad.obs |
numeric scalar indicating the number of missing ( |
Generic functions that have methods for objects of class
"gofOutlier"
include:
print
.
Since objects of class "gofOutlier"
are lists, you may extract
their components with the $
and [[
operators.
Steven P. Millard (EnvStats@ProbStatInfo.com)
rosnerTest
, print.gofOutlier
,
Goodness-of-Fit Tests.
# Create an object of class "gofOutlier", then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)
set.seed(250)
dat <- c(rnorm(30, mean = 3, sd = 2), rnorm(3, mean = 10, sd = 1))
gofOutlier.obj <- rosnerTest(dat, k = 4)
mode(gofOutlier.obj)
#[1] "list"
class(gofOutlier.obj)
#[1] "gofOutlier"
names(gofOutlier.obj)
# [1] "distribution" "statistic" "sample.size" "parameters"
# [5] "alpha" "crit.value" "n.outliers" "alternative"
# [9] "method" "data" "data.name" "bad.obs"
#[13] "all.stats"
gofOutlier.obj
#Results of Outlier Test
#-------------------------
#
#Test Method: Rosner's Test for Outliers
#
#Hypothesized Distribution: Normal
#
#Data: dat
#
#Sample Size: 33
#
#Test Statistics: R.1 = 2.848514
# R.2 = 3.086875
# R.3 = 3.033044
# R.4 = 2.380235
#
#Test Statistic Parameter: k = 4
#
#Alternative Hypothesis: Up to 4 observations are not
# from the same Distribution.
#
#Type I Error: 5%
#
#Number of Outliers Detected: 3
#
# i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier
#1 0 3.549744 2.531011 10.7593656 33 2.848514 2.951949 TRUE
#2 1 3.324444 2.209872 10.1460427 31 3.086875 2.938048 TRUE
#3 2 3.104392 1.856109 8.7340527 32 3.033044 2.923571 TRUE
#4 3 2.916737 1.560335 -0.7972275 25 2.380235 2.908473 FALSE
#==========
# Extract the data frame with all the test results
#-------------------------------------------------
gofOutlier.obj$all.stats
# i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier
#1 0 3.549744 2.531011 10.7593656 33 2.848514 2.951949 TRUE
#2 1 3.324444 2.209872 10.1460427 31 3.086875 2.938048 TRUE
#3 2 3.104392 1.856109 8.7340527 32 3.033044 2.923571 TRUE
#4 3 2.916737 1.560335 -0.7972275 25 2.380235 2.908473 FALSE
#==========
# Clean up
#---------
rm(dat, gofOutlier.obj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.