# rosnerTest: Rosner's Test for Outliers In EnvStats: Package for Environmental Statistics, Including US EPA Guidance

## Description

Perform Rosner's generalized extreme Studentized deviate test for up to k potential outliers in a dataset, assuming the data without any outliers come from a normal (Gaussian) distribution.

## Usage

 1  rosnerTest(x, k = 3, alpha = 0.05, warn = TRUE) 

## Arguments

 x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed. There must be at least 10 non-missing, finite observations in x. k positive integer indicating the number of suspected outliers. The argument k must be between 1 and n-2 where n denotes the number of non-missing, finite values in the arguemnt x. The default value is k=3. alpha numeric scalar between 0 and 1 indicating the Type I error associated with the test of hypothesis. The default value is alpha=0.05. warn logical scalar indicating whether to issue a warning (warn=TRUE; the default) when the number of non-missing, finite values in x and the value of k are such that the assumed Type I error level might not be maintained. See the DETAILS section below.

## Details

Let x_1, x_2, …, x_n denote the n observations. We assume that n-k of these observations come from the same normal (Gaussian) distribution, and that the k most “extreme” observations may or may not represent observations from a different distribution. Let x^{*}_1, x^{*}_2, …, x^{*}_{n-i} denote the n-i observations left after omiting the i most extreme observations, where i = 0, 1, …, k-1. Let \bar{x}^{(i)} and s^{(i)} denote the mean and standard deviation, respectively, of the n-i observations in the data that remain after removing the i most extreme observations. Thus, \bar{x}^{(0)} and s^{(0)} denote the mean and standard deviation for the full sample, and in general

\bar{x}^{(i)} = \frac{1}{n-i}∑_{j=1}^{n-i} x^{*}_j \;\;\;\;\;\; (1)

s^{(i)} = √{\frac{1}{n-i-1} ∑_{j=1}^{n-i} (x^{*}_j - \bar{x}^{(i)})^2} \;\;\;\;\;\; (2)

For a specified value of i, the most extreme observation x^{(i)} is the one that is the greatest distance from the mean for that data set, i.e.,

x^{(i)} = \max_{j=1,2,…,n-i} |x^{*}_j - \bar{x}^{(i)}| \;\;\;\;\;\; (3)

Thus, an extreme observation may be the smallest or the largest one in that data set.

Rosner's test is based on the k statistics R_1, R_2, …, R_k, which represent the extreme Studentized deviates computed from successively reduced samples of size n, n-1, …, n-k+1:

R_{i+1} = \frac{|x^{(i)} - \bar{x}^{(i)}|}{s^{(i)}} \;\;\;\;\;\; (4)

Critical values for R_{i+1} are denoted λ_{i+1} and are computed as:

λ_{i+1} = \frac{t_{p, n-i-2} (n-i-1)}{√{(n-i-2 + t_{p, n-i-2}) (n-i)}} \;\;\;\;\;\; (5)

where t_{p, ν} denotes the p'th quantile of Student's t-distribution with ν degrees of freedom, and in this case

p = 1 - \frac{α/2}{n - i} \;\;\;\;\;\; (6)

where α denotes the Type I error level.

The algorithm for determining the number of outliers is as follows:

1. Compare R_k with λ_k. If R_k > λ_k then conclude the k most extreme values are outliers.

2. If R_k ≤ λ_k then compare R_{k-1} with λ_{k-1}. If R_{k-1} > λ_{k-1} then conclude the k-1 most extreme values are outliers.

3. Continue in this fashion until a certain number of outliers have been identified or Rosner's test finds no outliers at all.

Based on a study using N=1,000 simulations, Rosner's (1983) Table 1 shows the estimated true Type I error of declaring at least one outlier when none exists for various sample sizes n ranging from 10 to 100, and the declared maximum number of outliers k ranging from 1 to 10. Based on that table, Roser (1983) declared that for an assumed Type I error level of 0.05, as long as n ≥ 25, the estimated α levels are quite close to 0.05, and that similar results were obtained assuming a Type I error level of 0.01. However, the table below is an expanded version of Rosner's (1983) Table 1 and shows results based on N=10,000 simulations. You can see that for an assumed Type I error of 0.05, the test maintains the Type I error fairly well for sample sizes as small as n = 3 as long as k = 1, and for n ≥ 15, as long as k ≤ 2. Also, for an assumed Type I error of 0.01, the test maintains the Type I error fairly well for sample sizes as small as n = 15 as long as k ≤ 7.

Based on these results, when warn=TRUE, a warning is issued for the following cases indicating that the assumed Type I error may not be correct:

• alpha is greater than 0.01, the sample size is less than 15, and k is greater than 1.

• alpha is greater than 0.01, the sample size is at least 15 and less than 25, and k is greater than 2.

• alpha is less than or equal to 0.01, the sample size is less than 15, and k is greater than 1.

• k is greater than 10, or greater than the floor of half of the sample size (i.e., greater than the greatest integer less than or equal to half of the sample size). A warning is given for this case because simulations have not been done for this case.

Table 1a. Observed Type I Error Levels based on 10,000 Simulations, n = 3 to 5.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 3 1 0.047 0.043 0.051 0.009 0.007 0.01 4 1 0.049 0.045 0.053 0.010 0.008 0.012 2 0.107 0.101 0.113 0.021 0.018 0.024 5 1 0.048 0.044 0.053 0.008 0.006 0.009 2 0.095 0.090 0.101 0.020 0.018 0.023

Table 1b. Observed Type I Error Levels based on 10,000 Simulations, n = 6 to 10.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 6 1 0.048 0.044 0.053 0.010 0.009 0.012 2 0.085 0.080 0.091 0.017 0.015 0.020 3 0.141 0.134 0.148 0.028 0.025 0.031 7 1 0.048 0.044 0.053 0.013 0.011 0.015 2 0.080 0.075 0.086 0.017 0.015 0.020 3 0.112 0.106 0.118 0.022 0.019 0.025 8 1 0.048 0.044 0.053 0.011 0.009 0.013 2 0.080 0.074 0.085 0.017 0.014 0.019 3 0.102 0.096 0.108 0.020 0.017 0.023 4 0.143 0.136 0.150 0.028 0.025 0.031 9 1 0.052 0.048 0.057 0.010 0.008 0.012 2 0.069 0.064 0.074 0.014 0.012 0.016 3 0.097 0.091 0.103 0.018 0.015 0.021 4 0.120 0.114 0.126 0.024 0.021 0.027 10 1 0.051 0.047 0.056 0.010 0.008 0.012 2 0.068 0.063 0.073 0.012 0.010 0.014 3 0.085 0.080 0.091 0.015 0.013 0.017 4 0.106 0.100 0.112 0.021 0.018 0.024 5 0.135 0.128 0.142 0.025 0.022 0.028

Table 1c. Observed Type I Error Levels based on 10,000 Simulations, n = 11 to 15.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 11 1 0.052 0.048 0.056 0.012 0.010 0.014 2 0.070 0.065 0.075 0.014 0.012 0.017 3 0.082 0.077 0.088 0.014 0.011 0.016 4 0.101 0.095 0.107 0.019 0.016 0.021 5 0.116 0.110 0.123 0.022 0.019 0.024 12 1 0.052 0.047 0.056 0.011 0.009 0.013 2 0.067 0.062 0.072 0.011 0.009 0.013 3 0.074 0.069 0.080 0.016 0.013 0.018 4 0.088 0.082 0.093 0.016 0.014 0.019 5 0.099 0.093 0.105 0.016 0.013 0.018 6 0.117 0.111 0.123 0.021 0.018 0.023 13 1 0.048 0.044 0.052 0.010 0.008 0.012 2 0.064 0.059 0.069 0.014 0.012 0.016 3 0.070 0.065 0.075 0.013 0.011 0.015 4 0.079 0.074 0.084 0.014 0.012 0.017 5 0.088 0.083 0.094 0.015 0.013 0.018 6 0.109 0.103 0.115 0.020 0.017 0.022 14 1 0.046 0.042 0.051 0.009 0.007 0.011 2 0.062 0.057 0.066 0.012 0.010 0.014 3 0.069 0.064 0.074 0.012 0.010 0.014 4 0.077 0.072 0.082 0.015 0.013 0.018 5 0.084 0.079 0.090 0.016 0.013 0.018 6 0.091 0.085 0.097 0.017 0.014 0.019 7 0.107 0.101 0.113 0.018 0.016 0.021 15 1 0.054 0.050 0.059 0.010 0.008 0.012 2 0.057 0.053 0.062 0.010 0.008 0.012 3 0.065 0.060 0.069 0.013 0.011 0.016 4 0.073 0.068 0.078 0.014 0.011 0.016 5 0.074 0.069 0.079 0.012 0.010 0.014 6 0.086 0.081 0.092 0.015 0.013 0.017 7 0.099 0.094 0.105 0.018 0.015 0.020

Table 1d. Observed Type I Error Levels based on 10,000 Simulations, n = 16 to 20.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 16 1 0.052 0.048 0.057 0.010 0.008 0.012 2 0.055 0.051 0.059 0.011 0.009 0.013 3 0.068 0.063 0.073 0.011 0.009 0.013 4 0.074 0.069 0.079 0.015 0.013 0.017 5 0.077 0.072 0.082 0.015 0.013 0.018 6 0.075 0.070 0.080 0.013 0.011 0.016 7 0.087 0.082 0.093 0.017 0.014 0.020 8 0.096 0.090 0.101 0.016 0.014 0.019 17 1 0.047 0.043 0.051 0.008 0.007 0.010 2 0.059 0.054 0.063 0.011 0.009 0.013 3 0.062 0.057 0.067 0.012 0.010 0.014 4 0.070 0.065 0.075 0.012 0.009 0.014 5 0.069 0.064 0.074 0.012 0.010 0.015 6 0.071 0.066 0.076 0.015 0.012 0.017 7 0.081 0.076 0.087 0.014 0.012 0.016 8 0.083 0.078 0.088 0.015 0.013 0.017 18 1 0.051 0.047 0.055 0.010 0.008 0.012 2 0.056 0.052 0.061 0.012 0.010 0.014 3 0.065 0.060 0.070 0.012 0.010 0.015 4 0.065 0.060 0.070 0.013 0.011 0.015 5 0.069 0.064 0.074 0.012 0.010 0.014 6 0.068 0.063 0.073 0.014 0.011 0.016 7 0.072 0.067 0.077 0.014 0.011 0.016 8 0.076 0.071 0.081 0.012 0.010 0.014 9 0.081 0.076 0.086 0.012 0.010 0.014 19 1 0.051 0.046 0.055 0.008 0.006 0.010 2 0.059 0.055 0.064 0.012 0.010 0.014 3 0.059 0.054 0.064 0.011 0.009 0.013 4 0.061 0.057 0.066 0.012 0.010 0.014 5 0.067 0.062 0.072 0.013 0.010 0.015 6 0.066 0.061 0.071 0.011 0.009 0.013 7 0.069 0.064 0.074 0.013 0.011 0.015 8 0.074 0.069 0.079 0.012 0.010 0.014 9 0.082 0.077 0.087 0.015 0.013 0.018 20 1 0.053 0.048 0.057 0.011 0.009 0.013 2 0.056 0.052 0.061 0.010 0.008 0.012 3 0.060 0.056 0.065 0.009 0.007 0.011 4 0.063 0.058 0.068 0.012 0.010 0.014 5 0.063 0.059 0.068 0.014 0.011 0.016 6 0.063 0.058 0.067 0.011 0.009 0.013 7 0.065 0.061 0.070 0.011 0.009 0.013 8 0.070 0.065 0.076 0.012 0.010 0.014 9 0.076 0.070 0.081 0.013 0.011 0.015 10 0.081 0.076 0.087 0.012 0.010 0.014

Table 1e. Observed Type I Error Levels based on 10,000 Simulations, n = 21 to 25.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 21 1 0.054 0.049 0.058 0.013 0.011 0.015 2 0.054 0.049 0.058 0.012 0.010 0.014 3 0.058 0.054 0.063 0.012 0.010 0.014 4 0.058 0.054 0.063 0.011 0.009 0.013 5 0.064 0.059 0.069 0.013 0.011 0.016 6 0.066 0.061 0.071 0.012 0.010 0.015 7 0.063 0.058 0.068 0.013 0.011 0.015 8 0.066 0.061 0.071 0.010 0.008 0.012 9 0.073 0.068 0.078 0.013 0.011 0.015 10 0.071 0.066 0.076 0.012 0.010 0.014 22 1 0.047 0.042 0.051 0.010 0.008 0.012 2 0.058 0.053 0.062 0.012 0.010 0.015 3 0.056 0.052 0.061 0.010 0.008 0.012 4 0.059 0.055 0.064 0.012 0.010 0.014 5 0.061 0.057 0.066 0.009 0.008 0.011 6 0.063 0.058 0.068 0.013 0.010 0.015 7 0.065 0.060 0.070 0.013 0.010 0.015 8 0.065 0.060 0.070 0.014 0.012 0.016 9 0.065 0.060 0.070 0.012 0.010 0.014 10 0.067 0.062 0.072 0.012 0.009 0.014 23 1 0.051 0.047 0.056 0.008 0.007 0.010 2 0.056 0.052 0.061 0.010 0.009 0.012 3 0.056 0.052 0.061 0.011 0.009 0.013 4 0.062 0.057 0.066 0.011 0.009 0.013 5 0.061 0.056 0.065 0.010 0.009 0.012 6 0.060 0.055 0.064 0.012 0.010 0.014 7 0.062 0.057 0.066 0.011 0.009 0.013 8 0.063 0.058 0.068 0.012 0.010 0.014 9 0.066 0.061 0.071 0.012 0.010 0.014 10 0.068 0.063 0.073 0.014 0.012 0.017 24 1 0.051 0.046 0.055 0.010 0.008 0.012 2 0.056 0.051 0.060 0.011 0.009 0.013 3 0.058 0.053 0.062 0.010 0.008 0.012 4 0.060 0.056 0.065 0.013 0.011 0.015 5 0.057 0.053 0.062 0.012 0.010 0.014 6 0.065 0.060 0.069 0.011 0.009 0.013 7 0.062 0.057 0.066 0.012 0.010 0.014 8 0.060 0.055 0.065 0.012 0.010 0.014 9 0.066 0.061 0.071 0.012 0.010 0.014 10 0.064 0.059 0.068 0.012 0.010 0.015 25 1 0.054 0.050 0.059 0.012 0.009 0.014 2 0.055 0.051 0.060 0.010 0.008 0.012 3 0.057 0.052 0.062 0.011 0.009 0.013 4 0.055 0.051 0.060 0.011 0.009 0.013 5 0.060 0.055 0.065 0.012 0.010 0.014 6 0.060 0.055 0.064 0.011 0.009 0.013 7 0.057 0.052 0.061 0.011 0.009 0.013 8 0.062 0.058 0.067 0.011 0.009 0.013 9 0.058 0.053 0.062 0.012 0.010 0.014 10 0.061 0.057 0.066 0.010 0.008 0.012

Table 1f. Observed Type I Error Levels based on 10,000 Simulations, n = 26 to 30.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 26 1 0.051 0.047 0.055 0.012 0.010 0.014 2 0.057 0.053 0.062 0.013 0.011 0.015 3 0.055 0.050 0.059 0.012 0.010 0.014 4 0.055 0.051 0.060 0.010 0.008 0.012 5 0.058 0.054 0.063 0.011 0.009 0.013 6 0.061 0.056 0.066 0.012 0.010 0.014 7 0.059 0.054 0.064 0.011 0.009 0.013 8 0.060 0.056 0.065 0.010 0.008 0.012 9 0.060 0.056 0.065 0.011 0.009 0.013 10 0.061 0.056 0.065 0.011 0.009 0.013 27 1 0.050 0.046 0.054 0.009 0.007 0.011 2 0.054 0.050 0.059 0.011 0.009 0.013 3 0.062 0.057 0.066 0.012 0.010 0.014 4 0.063 0.058 0.068 0.011 0.009 0.013 5 0.051 0.047 0.055 0.010 0.008 0.012 6 0.058 0.053 0.062 0.011 0.009 0.013 7 0.060 0.056 0.065 0.010 0.008 0.012 8 0.056 0.052 0.061 0.010 0.008 0.012 9 0.061 0.056 0.066 0.012 0.010 0.014 10 0.055 0.051 0.060 0.008 0.006 0.010 28 1 0.049 0.045 0.053 0.010 0.008 0.011 2 0.057 0.052 0.061 0.011 0.009 0.013 3 0.056 0.052 0.061 0.012 0.009 0.014 4 0.057 0.053 0.062 0.011 0.009 0.013 5 0.057 0.053 0.062 0.010 0.008 0.012 6 0.056 0.051 0.060 0.010 0.008 0.012 7 0.057 0.052 0.061 0.010 0.008 0.012 8 0.058 0.054 0.063 0.011 0.009 0.013 9 0.054 0.050 0.058 0.011 0.009 0.013 10 0.062 0.057 0.067 0.011 0.009 0.013 29 1 0.049 0.045 0.053 0.011 0.009 0.013 2 0.053 0.048 0.057 0.010 0.008 0.012 3 0.056 0.051 0.060 0.010 0.009 0.012 4 0.055 0.050 0.059 0.010 0.008 0.012 5 0.056 0.051 0.060 0.010 0.008 0.012 6 0.057 0.053 0.062 0.012 0.010 0.014 7 0.055 0.050 0.059 0.010 0.008 0.012 8 0.057 0.052 0.061 0.011 0.009 0.013 9 0.056 0.051 0.061 0.011 0.009 0.013 10 0.057 0.052 0.061 0.011 0.009 0.013 30 1 0.050 0.046 0.054 0.009 0.007 0.011 2 0.054 0.049 0.058 0.011 0.009 0.013 3 0.056 0.052 0.061 0.012 0.010 0.015 4 0.054 0.049 0.058 0.010 0.008 0.012 5 0.058 0.053 0.063 0.012 0.010 0.014 6 0.062 0.058 0.067 0.012 0.010 0.014 7 0.056 0.052 0.061 0.012 0.010 0.014 8 0.059 0.054 0.064 0.011 0.009 0.013 9 0.056 0.052 0.061 0.010 0.009 0.012 10 0.058 0.053 0.062 0.012 0.010 0.015

Table 1g. Observed Type I Error Levels based on 10,000 Simulations, n = 31 to 35.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 31 1 0.051 0.047 0.056 0.009 0.007 0.011 2 0.054 0.050 0.059 0.010 0.009 0.012 3 0.053 0.049 0.058 0.010 0.008 0.012 4 0.055 0.050 0.059 0.010 0.008 0.012 5 0.053 0.049 0.057 0.011 0.009 0.013 6 0.055 0.050 0.059 0.010 0.008 0.012 7 0.055 0.050 0.059 0.012 0.010 0.014 8 0.056 0.051 0.060 0.010 0.008 0.012 9 0.057 0.053 0.062 0.011 0.009 0.013 10 0.058 0.053 0.062 0.011 0.009 0.013 32 1 0.054 0.049 0.058 0.010 0.008 0.012 2 0.054 0.050 0.059 0.010 0.008 0.012 3 0.052 0.047 0.056 0.009 0.007 0.011 4 0.056 0.051 0.060 0.011 0.009 0.013 5 0.056 0.052 0.061 0.011 0.009 0.013 6 0.055 0.051 0.060 0.011 0.009 0.013 7 0.055 0.051 0.060 0.010 0.008 0.012 8 0.055 0.051 0.060 0.010 0.008 0.012 9 0.057 0.053 0.062 0.012 0.010 0.014 10 0.054 0.050 0.059 0.010 0.008 0.012 33 1 0.051 0.046 0.055 0.011 0.009 0.013 2 0.055 0.051 0.060 0.011 0.009 0.013 3 0.056 0.052 0.061 0.010 0.008 0.012 4 0.052 0.048 0.057 0.010 0.008 0.012 5 0.055 0.050 0.059 0.010 0.008 0.012 6 0.058 0.053 0.062 0.011 0.009 0.013 7 0.057 0.052 0.061 0.010 0.008 0.012 8 0.058 0.054 0.063 0.011 0.009 0.013 9 0.057 0.053 0.062 0.012 0.010 0.014 10 0.055 0.051 0.060 0.011 0.009 0.013 34 1 0.052 0.048 0.056 0.009 0.007 0.011 2 0.053 0.049 0.058 0.011 0.009 0.013 3 0.055 0.050 0.059 0.012 0.010 0.014 4 0.056 0.052 0.061 0.010 0.008 0.012 5 0.053 0.048 0.057 0.009 0.007 0.011 6 0.055 0.050 0.059 0.010 0.008 0.012 7 0.052 0.048 0.057 0.012 0.010 0.014 8 0.055 0.050 0.059 0.009 0.008 0.011 9 0.055 0.051 0.060 0.011 0.009 0.013 10 0.054 0.049 0.058 0.010 0.008 0.012 35 1 0.051 0.046 0.055 0.010 0.009 0.012 2 0.054 0.049 0.058 0.010 0.009 0.012 3 0.055 0.050 0.059 0.010 0.009 0.012 4 0.053 0.048 0.057 0.011 0.009 0.013 5 0.056 0.051 0.061 0.011 0.009 0.013 6 0.055 0.051 0.059 0.012 0.010 0.014 7 0.054 0.050 0.059 0.011 0.009 0.013 8 0.054 0.049 0.058 0.011 0.009 0.013 9 0.061 0.056 0.066 0.012 0.010 0.014 10 0.053 0.048 0.057 0.011 0.009 0.013

Table 1h. Observed Type I Error Levels based on 10,000 Simulations, n = 36 to 40.

 Assumed α=0.05 Assumed α=0.01 n k \hat{α} 95% LCL 95% UCL \hat{α} 95% LCL 95% UCL 36 1 0.047 0.043 0.051 0.010 0.008 0.012 2 0.058 0.053 0.062 0.012 0.010 0.015 3 0.052 0.047 0.056 0.009 0.007 0.011 4 0.052 0.048 0.056 0.012 0.010 0.014 5 0.052 0.048 0.057 0.010 0.008 0.012 6 0.055 0.051 0.059 0.012 0.010 0.014 7 0.053 0.048 0.057 0.011 0.009 0.013 8 0.056 0.051 0.060 0.012 0.010 0.014 9 0.056 0.051 0.060 0.011 0.009 0.013 10 0.056 0.051 0.060 0.011 0.009 0.013 37 1 0.050 0.046 0.055 0.010 0.008 0.012 2 0.054 0.049 0.058 0.011 0.009 0.013 3 0.054 0.049 0.058 0.011 0.009 0.013 4 0.054 0.050 0.058 0.010 0.008 0.012 5 0.054 0.049 0.058 0.010 0.008 0.012 6 0.054 0.050 0.058 0.011 0.009 0.013 7 0.055 0.051 0.060 0.010 0.008 0.012 8 0.055 0.050 0.059 0.011 0.009 0.013 9 0.053 0.049 0.058 0.011 0.009 0.013 10 0.049 0.045 0.054 0.009 0.007 0.011 38 1 0.049 0.045 0.053 0.009 0.007 0.011 2 0.052 0.047 0.056 0.008 0.007 0.010 3 0.054 0.050 0.059 0.011 0.009 0.013 4 0.055 0.050 0.059 0.011 0.009 0.013 5 0.056 0.052 0.061 0.012 0.010 0.014 6 0.055 0.050 0.059 0.011 0.009 0.013 7 0.049 0.045 0.053 0.009 0.007 0.011 8 0.052 0.048 0.057 0.010 0.008 0.012 9 0.054 0.050 0.059 0.010 0.009 0.012 10 0.055 0.050 0.059 0.011 0.009 0.013 39 1 0.047 0.043 0.051 0.010 0.008 0.012 2 0.055 0.051 0.059 0.010 0.008 0.012 3 0.053 0.049 0.057 0.010 0.008 0.012 4 0.053 0.049 0.058 0.010 0.009 0.012 5 0.052 0.048 0.057 0.010 0.008 0.012 6 0.053 0.049 0.058 0.010 0.008 0.012 7 0.057 0.052 0.061 0.011 0.009 0.013 8 0.057 0.053 0.062 0.012 0.010 0.014 9 0.050 0.046 0.055 0.010 0.008 0.012 10 0.056 0.051 0.060 0.011 0.009 0.013 40 1 0.049 0.045 0.054 0.010 0.008 0.012 2 0.052 0.048 0.057 0.010 0.009 0.012 3 0.055 0.050 0.059 0.011 0.009 0.013 4 0.054 0.050 0.059 0.011 0.009 0.013 5 0.054 0.050 0.059 0.010 0.008 0.012 6 0.049 0.045 0.053 0.010 0.008 0.012 7 0.056 0.051 0.060 0.011 0.009 0.013 8 0.054 0.050 0.059 0.011 0.009 0.013 9 0.047 0.043 0.052 0.010 0.008 0.011 10 0.058 0.054 0.063 0.010 0.008 0.012

## Value

A list of class "gofOutlier" containing the results of the hypothesis test. See the help file for gofOutlier.object for details.

## Note

Rosner's test is a commonly used test for “outliers” when you are willing to assume that the data without outliers follows a normal (Gaussian) distribution. It is designed to avoid masking, which occurs when an outlier goes undetected because it is close in value to another outlier.

Rosner's test is a kind of discordancy test (Barnett and Lewis, 1995). The test statistic of a discordancy test is usually a ratio: the numerator is the difference between the suspected outlier and some summary statistic of the data set (e.g., mean, next largest observation, etc.), while the denominator is always a measure of spread within the data (e.g., standard deviation, range, etc.). Both USEPA (2009) and USEPA (2013a,b) discuss two commonly used discordancy tests: Dixon's test and Rosner's test. Both of these tests assume that all of the data that are not outliers come from a normal (Gaussian) distribution.

There are many forms of Dixon's test (Barnett and Lewis, 1995). The one presented in USEPA (2009) and USEPA (20013a,b) assumes just one outlier (Dixon, 1953). This test is vulnerable to "masking" in which the presence of several outliers masks the fact that even one outlier is present. There are also other forms of Dixon's test that allow for more than one outlier based on a sequence of sub-tests, but these tests are also vulnerable to masking.

Rosner's test allows you to test for several possible outliers and avoids the problem of masking. Rosner's test requires you to set the number of suspected outliers, k, in advance. As in the case of Dixon's test, there are several forms of Rosner's test, so you need to be aware of which one you are using. The form of Rosner's test presented in USEPA (2009) is based on the extreme Studentized deviate (ESD) (Rosner, 1975), whereas the form of Rosner's test performed by the EnvStats function rosnerTest and presented in USEPA (2013a,b) is based on the generalized ESD (Rosner, 1983; Gilbert, 1987). USEPA (2013a, p. 190) cites both Rosner (1975) and Rosner (1983), but presents only the test given in Rosner (1983). Rosner's test based on the ESD has the appropriate Type I error level if there are no outliers in the dataset, but if there are actually say m outliers, where m < k, then the ESD version of Rosner's test tends to declare more than m outliers with a probability that is greater than the stated Type I error level (referred to as “swamping”). Rosner's test based on the generalized ESD fixes this problem. USEPA (2013a, pp. 17, 191) incorrectly states that the generalized ESD version of Rosner's test is vulnerable to masking. Surprisingly, the well-known book on statistical outliers by Barnett and Lewis (1995) does not discuss Rosner's generalized ESD test.

As noted, using Rosner's test requires specifying the number of suspected outliers, k, in advance. USEPA (2013a, pp.190-191) states: “A graphical display (Q-Q plot) can be used to identify suspected outliers needed to perform the Rosner test”, and USEPA (2009, p. 12-11) notes: “A potential drawback of Rosner's test is that the user must first identify the maximum number of potential outliers (k) prior to running the test. Therefore, this requirement makes the test ill-advised as an automatic outlier screening tool, and somewhat reliant on the user to identify candidate outliers.”

When observations contain non-detect values (NDs), USEPA (2013a, p. 191) states: “one may replace the NDs by their respective detection limits (DLs), DL/2, or may just ignore them ....” This is bad advice, as this method of dealing with non-detects will produce Type I error rates that are not correct.

OUTLIERS ARE NOT NECESSARILY INCORRECT VALUES
Whether an observation is an “outlier” depends on the underlying assumed statistical model. McBean and Rovers (1992) state:
“It may be possible to ignore the outlier if a physical rationale is available but, failing that, the value must be included .... Note that the use of statistics does not interpret the facts, it simply makes the facts easier to see. Therefore, it is incumbent on the analyst to identify whether or not the high value ... is truly representative of the chemical being monitored or, instead, is an outlier for reasons such as a result of sampling or laboratory error.”

USEPA (2006, p.51) states:
“If scientific reasoning does not explain the outlier, it should not be discarded from the data set.”

Finally, an editorial by the Editor-in-Chief of the journal Science deals with this topic (McNutt, 2014).

You can use the functions qqPlot and gofTest to explore other possible statistical models for the data, or you can use nonparametric statistics if you do not want to assume a particular distribution.

## Author(s)

Steven P. Millard ([email protected])

## References

Barnett, V., and T. Lewis. (1995). Outliers in Statistical Data. Third Edition. John Wiley & Sons, Chichester, UK, pp. 235–236.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY, pp.188–191.

McBean, E.A, and F.A. Rovers. (1992). Estimation of the Probability of Exceedance of Contaminant Concentrations. Ground Water Monitoring Review Winter, pp. 115–119.

McNutt, M. (2014). Raising the Bar. Science 345(6192), p. 9.

Rosner, B. (1975). On the Detection of Many Outliers. Technometrics 17, 221–227.

Rosner, B. (1983). Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 25, 165–172.

USEPA. (2006). Data Quality Assessment: A Reviewer's Guide. EPA QA/G-9R. EPA/240/B-06/002, February 2006. Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery Program Implementation and Information Division. U.S. Environmental Protection Agency, Washington, D.C., pp. 12-10 to 12-14.

USEPA. (2013a). ProUCL Version 5.0.00 Technical Guide. EPA/600/R-07/041, September 2013. Office of Research and Development. U.S. Environmental Protection Agency, Washington, D.C., pp. 190–195.

USEPA. (2013b). ProUCL Version 5.0.00 User Guide. EPA/600/R-07/041, September 2013. Office of Research and Development. U.S. Environmental Protection Agency, Washington, D.C., pp. 190–195.

gofTest, gofOutlier.object, print.gofOutlier, Normal, qqPlot.

## Examples

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131  # Combine 30 observations from a normal distribution with mean 3 and # standard deviation 2, with 3 observations from a normal distribution # with mean 10 and standard deviation 1, then run Rosner's Test on these # data, specifying k=4 potential outliers based on looking at the # normal Q-Q plot. # (Note: the call to set.seed simply allows you to reproduce # this example.) set.seed(250) dat <- c(rnorm(30, mean = 3, sd = 2), rnorm(3, mean = 10, sd = 1)) dev.new() qqPlot(dat) rosnerTest(dat, k = 4) #Results of Outlier Test #------------------------- # #Test Method: Rosner's Test for Outliers # #Hypothesized Distribution: Normal # #Data: dat # #Sample Size: 33 # #Test Statistics: R.1 = 2.848514 # R.2 = 3.086875 # R.3 = 3.033044 # R.4 = 2.380235 # #Test Statistic Parameter: k = 4 # #Alternative Hypothesis: Up to 4 observations are not # from the same Distribution. # #Type I Error: 5% # #Number of Outliers Detected: 3 # # i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier #1 0 3.549744 2.531011 10.7593656 33 2.848514 2.951949 TRUE #2 1 3.324444 2.209872 10.1460427 31 3.086875 2.938048 TRUE #3 2 3.104392 1.856109 8.7340527 32 3.033044 2.923571 TRUE #4 3 2.916737 1.560335 -0.7972275 25 2.380235 2.908473 FALSE #---------- # Clean up rm(dat) graphics.off() #-------------------------------------------------------------------- # Example 12-4 of USEPA (2009, page 12-12) gives an example of # using Rosner's test to test for outliers in napthalene measurements (ppb) # taken at 5 background wells over 5 quarters. The data for this example # are stored in EPA.09.Ex.12.4.naphthalene.df. EPA.09.Ex.12.4.naphthalene.df # Quarter Well Naphthalene.ppb #1 1 BW.1 3.34 #2 2 BW.1 5.39 #3 3 BW.1 5.74 # ... #23 3 BW.5 5.53 #24 4 BW.5 4.42 #25 5 BW.5 35.45 longToWide(EPA.09.Ex.12.4.naphthalene.df, "Naphthalene.ppb", "Quarter", "Well", paste.row.name = TRUE) # BW.1 BW.2 BW.3 BW.4 BW.5 #Quarter.1 3.34 5.59 1.91 6.12 8.64 #Quarter.2 5.39 5.96 1.74 6.05 5.34 #Quarter.3 5.74 1.47 23.23 5.18 5.53 #Quarter.4 6.88 2.57 1.82 4.43 4.42 #Quarter.5 5.85 5.39 2.02 1.00 35.45 # Look at Q-Q plots for both the raw and log-transformed data #------------------------------------------------------------ dev.new() with(EPA.09.Ex.12.4.naphthalene.df, qqPlot(Naphthalene.ppb, add.line = TRUE, main = "Figure 12-6. Naphthalene Probability Plot")) dev.new() with(EPA.09.Ex.12.4.naphthalene.df, qqPlot(Naphthalene.ppb, dist = "lnorm", add.line = TRUE, main = "Figure 12-7. Log Naphthalene Probability Plot")) # Test for 2 potential outliers on the original scale: #----------------------------------------------------- with(EPA.09.Ex.12.4.naphthalene.df, rosnerTest(Naphthalene.ppb, k = 2)) #Results of Outlier Test #------------------------- # #Test Method: Rosner's Test for Outliers # #Hypothesized Distribution: Normal # #Data: Naphthalene.ppb # #Sample Size: 25 # #Test Statistics: R.1 = 3.930957 # R.2 = 4.160223 # #Test Statistic Parameter: k = 2 # #Alternative Hypothesis: Up to 2 observations are not # from the same Distribution. # #Type I Error: 5% # #Number of Outliers Detected: 2 # # i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier #1 0 6.44240 7.379271 35.45 25 3.930957 2.821681 TRUE #2 1 5.23375 4.325790 23.23 13 4.160223 2.801551 TRUE #---------- # Clean up graphics.off() 

### Example output

Attaching package: 'EnvStats'

The following objects are masked from 'package:stats':

predict, predict.lm

The following object is masked from 'package:base':

print.default

Results of Outlier Test
-------------------------

Test Method:                     Rosner's Test for Outliers

Hypothesized Distribution:       Normal

Data:                            dat

Sample Size:                     33

Test Statistics:                 R.1 = 2.848514
R.2 = 3.086875
R.3 = 3.033044
R.4 = 2.380235

Test Statistic Parameter:        k = 4

Alternative Hypothesis:          Up to 4 observations are not
from the same Distribution.

Type I Error:                    5%

Number of Outliers Detected:     3

i   Mean.i     SD.i      Value Obs.Num    R.i+1 lambda.i+1 Outlier
1 0 3.549744 2.531011 10.7593656      33 2.848514   2.951949    TRUE
2 1 3.324444 2.209872 10.1460427      31 3.086875   2.938048    TRUE
3 2 3.104392 1.856109  8.7340527      32 3.033044   2.923571    TRUE
4 3 2.916737 1.560335 -0.7972275      25 2.380235   2.908473   FALSE

Quarter Well Naphthalene.ppb
1        1 BW.1            3.34
2        2 BW.1            5.39
3        3 BW.1            5.74
4        4 BW.1            6.88
5        5 BW.1            5.85
6        1 BW.2            5.59
7        2 BW.2            5.96
8        3 BW.2            1.47
9        4 BW.2            2.57
10       5 BW.2            5.39
11       1 BW.3            1.91
12       2 BW.3            1.74
13       3 BW.3           23.23
14       4 BW.3            1.82
15       5 BW.3            2.02
16       1 BW.4            6.12
17       2 BW.4            6.05
18       3 BW.4            5.18
19       4 BW.4            4.43
20       5 BW.4            1.00
21       1 BW.5            8.64
22       2 BW.5            5.34
23       3 BW.5            5.53
24       4 BW.5            4.42
25       5 BW.5           35.45
BW.1 BW.2  BW.3 BW.4  BW.5
Quarter.1 3.34 5.59  1.91 6.12  8.64
Quarter.2 5.39 5.96  1.74 6.05  5.34
Quarter.3 5.74 1.47 23.23 5.18  5.53
Quarter.4 6.88 2.57  1.82 4.43  4.42
Quarter.5 5.85 5.39  2.02 1.00 35.45
dev.new(): using pdf(file="Rplots1.pdf")
dev.new(): using pdf(file="Rplots2.pdf")

Results of Outlier Test
-------------------------

Test Method:                     Rosner's Test for Outliers

Hypothesized Distribution:       Normal

Data:                            Naphthalene.ppb

Sample Size:                     25

Test Statistics:                 R.1 = 3.930957
R.2 = 4.160223

Test Statistic Parameter:        k = 2

Alternative Hypothesis:          Up to 2 observations are not
from the same Distribution.

Type I Error:                    5%

Number of Outliers Detected:     2

i  Mean.i     SD.i Value Obs.Num    R.i+1 lambda.i+1 Outlier
1 0 6.44240 7.379271 35.45      25 3.930957   2.821681    TRUE
2 1 5.23375 4.325790 23.23      13 4.160223   2.801551    TRUE


EnvStats documentation built on July 15, 2018, 9:03 a.m.