Description Usage Arguments Value Author(s) References See Also Examples
samiuddin
Performs the test for homogeneity of
variances of Samiuddin (1976).
1 |
trat |
Numeric or complex vector containing treatments. |
resp |
Numeric or complex vector containing the response variable. |
t |
Number of treatments. |
r |
Numeric or complex vector containing the number of replications of each treatment. |
Returns the p-value of Samiuddin's test of homogeneity of variances and its practical interpretation for significance level of 5%.
Eric B Ferreira, eric.ferreira@unifal-mg.edu.br @author Denismar Alves Nogueira @author Marcos Costa de Paula @author Mateus Pimenta Siqueira Lima
SAMIUDDIN, M. Bayesian test of homogeneity of variance. Journal of the American Statistical Association, 71(354):515-517, Jun. 1976.
NOGUEIRA, D, P.; PEREIRA, G, M. Desempenho de testes para homogeneidade de variancias em delineamentos inteiramente casualizados. Sigmae, Alfenas, v.2, n.1, p. 7-22. 2013.
bartlett
, layard
,
levene
, oneillmathews
.
1 2 3 |
Attaching package: ‘ExpDes’
The following object is masked from ‘package:stats’:
ccf
------------------------------------------------------------------------
Analysis of Variance Table
------------------------------------------------------------------------
DF SS MS Fc Pr>Fc
Treatament 3 214.88 3 6.5212 0.0029622
Residuals 20 219.67 2
Total 23 434.55 1
------------------------------------------------------------------------
CV = 3.41 %
------------------------------------------------------------------------
Shapiro-Wilk normality test
p-value: 0.91697
According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
------------------------------------------------------------------------
------------------------------------------------------------------------
Homogeneity of variances test
p-value: 0.7911354
According to the test of samiuddin at 5% of significance, residuals can be considered homocedastic.
------------------------------------------------------------------------
Adjustment of polynomial models of regression
------------------------------------------------------------------------
Linear Model
==========================================
Estimate Standard.Error tc p.value
------------------------------------------
b0 100.2878 1.1320 88.5938 0
b1 -0.4136 0.1210 -3.4177 0.0027
------------------------------------------
R2 of linear model
--------
0.597077
--------
Analysis of Variance of linear model
================================================
DF SS MS Fc p.value
------------------------------------------------
Linear Effect 1 128.2987 128.2987 11.68 0.00273
Lack of fit 2 86.5794 43.2897 3.94 0.03605
Residuals 20 219.6710 10.9836
------------------------------------------------
------------------------------------------------------------------------
Quadratic Model
==========================================
Estimate Standard.Error tc p.value
------------------------------------------
b0 101.5728 1.3187 77.0229 0
b1 -1.1846 0.4236 -2.7968 0.0111
b2 0.0514 0.0271 1.8995 0.0720
------------------------------------------
R2 of quadratic model
--------
0.781504
--------
Analysis of Variance of quadratic model
===================================================
DF SS MS Fc p.value
---------------------------------------------------
Linear Effect 1 128.2987 128.2987 11.68 0.00273
Quadratic Effect 1 39.6294 39.6294 3.61 0.07202
Lack of fit 1 46.9500 46.9500 4.27 0.05187
Residuals 20 219.6710 10.9836
---------------------------------------------------
------------------------------------------------------------------------
Cubic Model
==========================================
Estimate Standard.Error tc p.value
------------------------------------------
b0 102.1983 1.3530 75.5350 0
b1 -3.1445 1.0383 -3.0286 0.0066
b2 0.4267 0.1835 2.3250 0.0307
b3 -0.0167 0.0081 -2.0675 0.0519
------------------------------------------
R2 of cubic model
-
1
-
Analysis of Variance of cubic model
===================================================
DF SS MS Fc p.value
---------------------------------------------------
Linear Effect 1 128.2987 128.2987 11.68 0.00273
Quadratic Effect 1 39.6294 39.6294 3.61 0.07202
Cubic Effect 1 46.9500 46.9500 4.27 0.05187
Lack of fit 0 0 0 0 1
Residuals 20 219.6710 10.9836
---------------------------------------------------
------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.