Description Usage Arguments Details Value Note References Examples
View source: R/sx-scoreFAACT.R
Generates all of the scores of the Functional Assessment of Cancer Therapy - Functional Assessment of Anorexia Cachexia Therapy (FAACT, v4) from item responses.
1  | scoreFAACT(df, updateItems = FALSE, keepNvalid = FALSE)
 | 
df | 
 A data frame with the FAACT items, appropriately-named.  | 
updateItems | 
 Logical, if   | 
keepNvalid | 
 Logical, if   | 
Given a data frame that includes all of the FAACT (Version 4) items as variables, appropriately named, this function generates all of the FAACT scale scores. It is crucial that the item variables in the supplied data frame are named according to FACT conventions. For example, the first physical well-being item should be named GP1, the second GP2, and so on. Please refer to the materials provided by http://www.facit.org for the particular questionnaire you are using. In particular, refer to the left margin of the official questionnaire (i.e., from facit.org) for the appropriate item variable names.
The original data frame is returned (optionally with modified
items if updateItems = TRUE) with new variables corresponding to
the scored scales. If keepNvalid = TRUE, for each scored scale an
additional variable is returned that contains the number of valid
responses each respondent made to the items making up the given scale.
These optional variables have names of the format SCALENAME_N.
The following scale scores are returned:
Physical Well-Being subscale
Social/Family Well-Being subscale
Emotional Well-Being subscale
Physical Well-Being subscale
FACT-G Total Score (i.e., PWB+SWB+EWB+FWB)
Anorexia Cachexia subscale
FAACT Total Score (i.e., PWB+SWB+EWB+FWB+ACS)
FAACT Trial Outcome Index (e.g., PWB+FWB+ACS)
Keep in mind that this function (and R in general) is case-sensitive.
All variables should be in numeric or integer format.
This scoring function expects missing item responses to be coded as NA, 8, or 9, and valid item responses to be coded as 0, 1, 2, 3, or 4. Any other value for any of the items will result in an error message and no scores.
Some item variables are reverse coded for the purpose of generating the
scale scores.  The official (e.g., from http://www.facit.org) SAS
and SPSS scoring algorithms for this questionnaire automatically replace
the original items with their reverse-coded versions.  This can be
confusing if you accidentally run the algorithm more than once on your
data.  As its default, scoreFAACT DOES NOT replace any of your
original item variables with the reverse coded versions.  However, for
consistentcy with the behavior of the other versions on
http://www.facit.org, the updateItems argument is
provided.  If set to TRUE, any item that is supposed to be
reverse coded will be replaced with its reversed version in the data
frame returned by scoreFAACT.
FAACT Scoring Guidelines, available at http://www.facit.org
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  | ## Setting up item names for fake data
G_names <- c(paste0('GP', 1:7),
             paste0('GS', 1:7),
             paste0('GE', 1:6),
             paste0('GF', 1:7))
AC_names <- c('C6', 'ACT1', 'ACT2', 'ACT3', 'ACT4', 'ACT6', 'ACT7', 'ACT9',
  'O2', 'ACT10', 'ACT11', 'ACT13')
itemNames <- c(G_names, AC_names)
## Generating random item responses for 8 fake respondents
set.seed(6375309)
exampleDat <- t(replicate(8, sample(0:4, size = length(itemNames), replace = TRUE)))
## Making half of respondents missing about 10% of items,
## half missing about 50%.
miss10 <- t(replicate(4, sample(c(0, 9), prob = c(0.9, 0.1),
    size = length(itemNames), replace = TRUE)))
miss50 <- t(replicate(4, sample(c(0, 9), prob = c(0.5, 0.5),
    size = length(itemNames), replace = TRUE)))
missMtx <- rbind(miss10, miss50)
## Using 9 as the code for missing responses
exampleDat[missMtx == 9] <- 9
exampleDat <- as.data.frame(cbind(ID = paste0('ID', 1:8),
    as.data.frame(exampleDat)))
names(exampleDat) <- c('ID', itemNames)
## Returns data frame with scale scores and with original items untouched
scoredDat <- scoreFAACT(exampleDat)
names(scoredDat)
scoredDat
## Returns data frame with scale scores, with the appropriate items
## reverse scored, and with item values of 8 and 9 replaced with NA.
## Also illustrates the effect of setting keepNvalid = TRUE.
scoredDat <- scoreFAACT(exampleDat, updateItems = TRUE, keepNvalid = TRUE)
names(scoredDat)
## Descriptives of scored scales
summary(scoredDat[, c('PWB', 'SWB', 'EWB', 'FWB', 'FACTG',
                      'ACS', 'FAACT_TOTAL', 'FAACT_TOI')])
 | 
 [1] "ID"          "GP1"         "GP2"         "GP3"         "GP4"        
 [6] "GP5"         "GP6"         "GP7"         "GS1"         "GS2"        
[11] "GS3"         "GS4"         "GS5"         "GS6"         "GS7"        
[16] "GE1"         "GE2"         "GE3"         "GE4"         "GE5"        
[21] "GE6"         "GF1"         "GF2"         "GF3"         "GF4"        
[26] "GF5"         "GF6"         "GF7"         "C6"          "ACT1"       
[31] "ACT2"        "ACT3"        "ACT4"        "ACT6"        "ACT7"       
[36] "ACT9"        "O2"          "ACT10"       "ACT11"       "ACT13"      
[41] "PWB"         "SWB"         "EWB"         "FWB"         "FACTG"      
[46] "ACS"         "FAACT_TOTAL" "FAACT_TOI"  
   ID GP1 GP2 GP3 GP4 GP5 GP6 GP7 GS1 GS2 GS3 GS4 GS5 GS6 GS7 GE1 GE2 GE3 GE4
1 ID1   3   3   1   9   2   3   0   1   2   1   1   1   0   2   0   2   0   2
2 ID2   3   2   4   2   2   3   1   2   1   1   0   3   4   9   9   3   3   3
3 ID3   4   0   9   2   2   1   0   0   3   3   2   9   2   1   0   4   3   3
4 ID4   3   1   1   1   4   1   9   0   2   1   2   2   2   3   2   4   2   1
5 ID5   9   9   9   2   3   9   9   9   9   0   0   9   9   9   9   9   0   4
6 ID6   9   0   9   9   0   3   1   4   9   0   9   3   1   9   0   9   9   2
7 ID7   9   0   9   9   2   9   1   3   9   9   1   9   4   9   9   1   9   9
8 ID8   0   0   2   9   4   9   3   0   9   9   0   4   0   3   4   9   9   3
  GE5 GE6 GF1 GF2 GF3 GF4 GF5 GF6 GF7 C6 ACT1 ACT2 ACT3 ACT4 ACT6 ACT7 ACT9 O2
1   4   3   0   3   9   0   1   2   2  4    2    1    2    3    9    4    4  4
2   2   0   2   2   3   3   4   4   0  0    3    3    3    2    3    3    2  3
3   9   2   1   1   9   3   4   4   0  1    1    2    0    4    0    3    2  3
4   9   4   3   4   2   0   1   0   2  1    1    0    0    1    1    1    1  2
5   4   9   9   2   4   0   1   9   9  1    2    9    0    9    0    2    3  9
6   1   0   9   9   9   9   9   9   9  2    9    2    9    0    1    9    9  9
7   9   9   4   9   1   3   1   9   3  1    9    9    9    9    0    0    9  4
8   3   9   9   0   9   4   9   0   9  9    1    9    9    9    0    1    9  4
  ACT10 ACT11 ACT13    PWB    SWB  EWB    FWB  FACTG    ACS FAACT_TOTAL
1     3     0     4 14.000  8.000 13.0  9.333 44.333 22.909      67.242
2     0     0     2 11.000 12.833 13.2 18.000 55.033 22.000      77.033
3     2     4     3 17.500 12.833 14.4 15.167 59.900 21.000      80.900
4     3     2     3 15.167 12.000 13.2 12.000 52.367 30.000      82.367
5     0     9     9     NA     NA   NA 12.250     NA 30.857          NA
6     2     2     9 21.000 14.000 19.5     NA     NA     NA          NA
7     9     1     2     NA     NA   NA 16.800     NA     NA          NA
8     4     9     4 15.400  9.800   NA     NA     NA     NA          NA
  FAACT_TOI
1    46.242
2    51.000
3    53.667
4    57.167
5        NA
6        NA
7        NA
8        NA
 [1] "ID"            "GP1"           "GP2"           "GP3"          
 [5] "GP4"           "GP5"           "GP6"           "GP7"          
 [9] "GS1"           "GS2"           "GS3"           "GS4"          
[13] "GS5"           "GS6"           "GS7"           "GE1"          
[17] "GE2"           "GE3"           "GE4"           "GE5"          
[21] "GE6"           "GF1"           "GF2"           "GF3"          
[25] "GF4"           "GF5"           "GF6"           "GF7"          
[29] "C6"            "ACT1"          "ACT2"          "ACT3"         
[33] "ACT4"          "ACT6"          "ACT7"          "ACT9"         
[37] "O2"            "ACT10"         "ACT11"         "ACT13"        
[41] "PWB_N"         "SWB_N"         "EWB_N"         "FWB_N"        
[45] "FACTG_N"       "PWB"           "SWB"           "EWB"          
[49] "FWB"           "FACTG"         "ACS_N"         "FAACT_TOTAL_N"
[53] "ACS"           "FAACT_TOTAL"   "FAACT_TOI"    
      PWB             SWB             EWB             FWB        
 Min.   :11.00   Min.   : 8.00   Min.   :13.00   Min.   : 9.333  
 1st Qu.:14.29   1st Qu.:10.35   1st Qu.:13.20   1st Qu.:12.062  
 Median :15.28   Median :12.42   Median :13.20   Median :13.709  
 Mean   :15.68   Mean   :11.58   Mean   :14.66   Mean   :13.925  
 3rd Qu.:16.98   3rd Qu.:12.83   3rd Qu.:14.40   3rd Qu.:16.392  
 Max.   :21.00   Max.   :14.00   Max.   :19.50   Max.   :18.000  
 NA's   :2       NA's   :2       NA's   :3       NA's   :2       
     FACTG            ACS         FAACT_TOTAL      FAACT_TOI    
 Min.   :44.33   Min.   :21.00   Min.   :67.24   Min.   :46.24  
 1st Qu.:50.36   1st Qu.:22.00   1st Qu.:74.59   1st Qu.:49.81  
 Median :53.70   Median :22.91   Median :78.97   Median :52.33  
 Mean   :52.91   Mean   :25.35   Mean   :76.89   Mean   :52.02  
 3rd Qu.:56.25   3rd Qu.:30.00   3rd Qu.:81.27   3rd Qu.:54.54  
 Max.   :59.90   Max.   :30.86   Max.   :82.37   Max.   :57.17  
 NA's   :4       NA's   :3       NA's   :4       NA's   :4      
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.