Description Usage Arguments Details Value Note References Examples
View source: R/ca-scoreFACT_NP.R
Generates all of the scores of the Functional Assessment of Cancer Therapy - Nasopharyngeal Cancer (FACT-NP, v4) from item responses.
1 | scoreFACT_NP(df, updateItems = FALSE, keepNvalid = FALSE)
|
df |
A data frame with the FACT-NP items, appropriately-named. |
updateItems |
Logical, if |
keepNvalid |
Logical, if |
Given a data frame that includes all of the FACT-NP (Version 4) items as variables, appropriately named, this function generates all of the FACT-NP scale scores. It is crucial that the item variables in the supplied data frame are named according to FACT conventions. For example, the first physical well-being item should be named GP1, the second GP2, and so on. Please refer to the materials provided by http://www.facit.org for the particular questionnaire you are using. In particular, refer to the left margin of the official questionnaire (i.e., from facit.org) for the appropriate item variable names.
The original data frame is returned (optionally with modified
items if updateItems = TRUE
) with new variables corresponding to
the scored scales. If keepNvalid = TRUE
, for each scored scale an
additional variable is returned that contains the number of valid
responses each respondent made to the items making up the given scale.
These optional variables have names of the format SCALENAME_N
.
The following scale scores are returned:
Physical Well-Being subscale
Social/Family Well-Being subscale
Emotional Well-Being subscale
Physical Well-Being subscale
FACT-G Total Score (i.e., PWB+SWB+EWB+FWB)
Nasopharyngeal Cancer subscale
FACT-NP Total Score (i.e., PWB+SWB+EWB+FWB+NPS)
FACT-NP Trial Outcome Index (e.g., PWB+FWB+NPS)
Keep in mind that this function (and R in general) is case-sensitive.
All variables should be in numeric or integer format.
This scoring function expects missing item responses to be coded as NA, 8, or 9, and valid item responses to be coded as 0, 1, 2, 3, or 4. Any other value for any of the items will result in an error message and no scores.
Some item variables are reverse coded for the purpose of generating the
scale scores. The official (e.g., from http://www.facit.org) SAS
and SPSS scoring algorithms for this questionnaire automatically replace
the original items with their reverse-coded versions. This can be
confusing if you accidentally run the algorithm more than once on your
data. As its default, scoreFACT_NP
DOES NOT replace any of your
original item variables with the reverse coded versions. However, for
consistentcy with the behavior of the other versions on
http://www.facit.org, the updateItems
argument is
provided. If set to TRUE
, any item that is supposed to be
reverse coded will be replaced with its reversed version in the data
frame returned by scoreFACT_NP
.
FACT-NP Scoring Guidelines, available at http://www.facit.org
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## Setting up item names for fake data
G_names <- c(paste0('GP', 1:7),
paste0('GS', 1:7),
paste0('GE', 1:6),
paste0('GF', 1:7))
AC_names <- c('HN1', 'HN2', 'HN4', 'HN5', 'HN7', 'HN6', 'HN10', 'HN11', 'HN12', 'NP1', 'NP2',
'NTX6', 'NP3', 'NP4', 'NP5', 'NP6')
itemNames <- c(G_names, AC_names)
## Generating random item responses for 8 fake respondents
set.seed(6375309)
exampleDat <- t(replicate(8, sample(0:4, size = length(itemNames), replace = TRUE)))
## Making half of respondents missing about 10% of items,
## half missing about 50%.
miss10 <- t(replicate(4, sample(c(0, 9), prob = c(0.9, 0.1),
size = length(itemNames), replace = TRUE)))
miss50 <- t(replicate(4, sample(c(0, 9), prob = c(0.5, 0.5),
size = length(itemNames), replace = TRUE)))
missMtx <- rbind(miss10, miss50)
## Using 9 as the code for missing responses
exampleDat[missMtx == 9] <- 9
exampleDat <- as.data.frame(cbind(ID = paste0('ID', 1:8),
as.data.frame(exampleDat)))
names(exampleDat) <- c('ID', itemNames)
## Returns data frame with scale scores and with original items untouched
scoredDat <- scoreFACT_NP(exampleDat)
names(scoredDat)
scoredDat
## Returns data frame with scale scores, with the appropriate items
## reverse scored, and with item values of 8 and 9 replaced with NA.
## Also illustrates the effect of setting keepNvalid = TRUE.
scoredDat <- scoreFACT_NP(exampleDat, updateItems = TRUE, keepNvalid = TRUE)
names(scoredDat)
## Descriptives of scored scales
summary(scoredDat[, c('PWB', 'SWB', 'EWB', 'FWB', 'FACTG',
'NPS', 'FACT_NP_TOTAL', 'FACT_NP_TOI')])
|
[1] "ID" "GP1" "GP2" "GP3"
[5] "GP4" "GP5" "GP6" "GP7"
[9] "GS1" "GS2" "GS3" "GS4"
[13] "GS5" "GS6" "GS7" "GE1"
[17] "GE2" "GE3" "GE4" "GE5"
[21] "GE6" "GF1" "GF2" "GF3"
[25] "GF4" "GF5" "GF6" "GF7"
[29] "HN1" "HN2" "HN4" "HN5"
[33] "HN7" "HN6" "HN10" "HN11"
[37] "HN12" "NP1" "NP2" "NTX6"
[41] "NP3" "NP4" "NP5" "NP6"
[45] "PWB" "SWB" "EWB" "FWB"
[49] "FACTG" "NPS" "FACT_NP_TOTAL" "FACT_NP_TOI"
ID GP1 GP2 GP3 GP4 GP5 GP6 GP7 GS1 GS2 GS3 GS4 GS5 GS6 GS7 GE1 GE2 GE3 GE4
1 ID1 9 3 1 2 2 3 0 1 2 1 1 1 0 2 0 2 0 2
2 ID2 2 3 1 2 1 9 0 3 4 0 0 3 3 3 9 0 2 2
3 ID3 3 3 2 2 2 9 0 4 3 3 0 2 1 1 2 3 4 9
4 ID4 2 3 2 4 2 1 1 4 3 4 2 0 1 9 2 1 1 0
5 ID5 0 9 4 4 9 2 9 9 1 4 3 9 9 9 9 9 9 9
6 ID6 9 9 2 9 9 9 9 2 9 2 4 0 9 4 4 9 9 9
7 ID7 1 1 9 9 1 9 3 9 0 9 9 4 9 9 9 0 0 9
8 ID8 9 9 9 3 9 1 9 9 4 0 4 9 9 9 4 2 9 0
GE5 GE6 GF1 GF2 GF3 GF4 GF5 GF6 GF7 HN1 HN2 HN4 HN5 HN7 HN6 HN10 HN11 HN12
1 4 3 9 9 2 0 1 2 2 4 2 1 2 3 0 4 4 4
2 3 3 4 9 0 0 3 9 3 2 3 3 2 3 0 0 2 4
3 0 1 1 2 0 4 0 3 2 3 2 4 3 3 1 1 1 4
4 9 1 1 1 1 2 3 2 3 9 0 9 2 3 2 3 0 0
5 3 9 0 9 0 1 9 9 9 0 3 9 9 2 9 9 3 9
6 9 1 0 9 2 9 2 1 3 2 0 9 3 9 4 0 9 9
7 1 4 9 3 0 9 0 9 4 0 9 4 2 9 3 9 9 4
8 9 0 1 9 3 0 3 9 9 2 9 4 9 9 9 9 0 0
NP1 NP2 NTX6 NP3 NP4 NP5 NP6 PWB SWB EWB FWB FACTG NPS
1 3 0 4 3 2 4 2 15.167 8.000 13.0 9.80 45.967 38.000
2 0 2 2 2 1 0 0 17.500 16.000 7.2 14.00 54.700 34.000
3 1 2 0 2 1 2 2 14.000 14.000 14.4 12.00 54.400 38.000
4 0 0 0 9 3 9 3 13.000 16.333 15.6 13.00 57.933 42.667
5 1 0 9 9 2 9 0 10.500 NA NA NA NA NA
6 1 3 4 4 4 9 9 NA 16.800 NA 11.20 NA 20.800
7 0 4 9 1 9 9 9 17.500 NA 10.5 12.25 NA NA
8 9 3 9 2 3 3 3 NA NA 15.0 12.25 NA 32.000
FACT_NP_TOTAL FACT_NP_TOI
1 83.967 62.967
2 88.700 65.500
3 92.400 64.000
4 100.600 68.667
5 NA NA
6 NA NA
7 NA NA
8 NA NA
[1] "ID" "GP1" "GP2" "GP3"
[5] "GP4" "GP5" "GP6" "GP7"
[9] "GS1" "GS2" "GS3" "GS4"
[13] "GS5" "GS6" "GS7" "GE1"
[17] "GE2" "GE3" "GE4" "GE5"
[21] "GE6" "GF1" "GF2" "GF3"
[25] "GF4" "GF5" "GF6" "GF7"
[29] "HN1" "HN2" "HN4" "HN5"
[33] "HN7" "HN6" "HN10" "HN11"
[37] "HN12" "NP1" "NP2" "NTX6"
[41] "NP3" "NP4" "NP5" "NP6"
[45] "PWB_N" "SWB_N" "EWB_N" "FWB_N"
[49] "FACTG_N" "PWB" "SWB" "EWB"
[53] "FWB" "FACTG" "NPS_N" "FACT_NP_TOTAL_N"
[57] "NPS" "FACT_NP_TOTAL" "FACT_NP_TOI"
PWB SWB EWB FWB
Min. :10.50 Min. : 8.00 Min. : 7.20 Min. : 9.80
1st Qu.:13.25 1st Qu.:14.00 1st Qu.:11.12 1st Qu.:11.60
Median :14.58 Median :16.00 Median :13.70 Median :12.25
Mean :14.61 Mean :14.23 Mean :12.62 Mean :12.07
3rd Qu.:16.92 3rd Qu.:16.33 3rd Qu.:14.85 3rd Qu.:12.62
Max. :17.50 Max. :16.80 Max. :15.60 Max. :14.00
NA's :2 NA's :3 NA's :2 NA's :1
FACTG NPS FACT_NP_TOTAL FACT_NP_TOI
Min. :45.97 Min. :20.80 Min. : 83.97 Min. :62.97
1st Qu.:52.29 1st Qu.:32.50 1st Qu.: 87.52 1st Qu.:63.74
Median :54.55 Median :36.00 Median : 90.55 Median :64.75
Mean :53.25 Mean :34.24 Mean : 91.42 Mean :65.28
3rd Qu.:55.51 3rd Qu.:38.00 3rd Qu.: 94.45 3rd Qu.:66.29
Max. :57.93 Max. :42.67 Max. :100.60 Max. :68.67
NA's :4 NA's :2 NA's :4 NA's :4
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.