inst/sim/analyze_results.R

###############################################################################
# changed code of Fabian Scheipl lfpr3_analysis.R
# Author: Sarah Brockhaus
###############################################################################

# # M=50
# load("M50N1G30pffr.Rdata")
# M50N1G30 <- M50N1G30[,-1]
# 
# load("M50N1G100pffr.Rdata") 
# M50N1G100 <- M50N1G100[,-1]

# M=100
load("M100N1G30pffr.Rdata")
M100N1G30 <- M100N1G30[,-1]

load("M100N1G100pffr.Rdata")
M100N1G100 <- M100N1G100[,-1]

# # M=200
# load("M200N1G30pffr.Rdata")
# M200N1G30 <- M200N1G30[,-1]
# 
# load("M200N1G100pffr.Rdata")
# M200N1G100 <- M200N1G100[,-1]

# M=500
load("M500N1G30pffr.Rdata")
M500N1G30 <- M500N1G30[,-1]

load("M500N1G100pffr.Rdata") 
M500N1G100 <- M500N1G100[,-1]


# # M=50
# load("M50N1G30FDboost.Rdata")
# M50N1G30FDboost <- M50N1G30FDboost[,1:ncol(M100N1G30)]
# 
# load("M50N1G100FDboost.Rdata")
# M50N1G100FDboost <- M50N1G100FDboost[,1:ncol(M100N1G30)]

# M=100
load("M100N1G30FDboost.Rdata")
M100N1G30FDboost <- M100N1G30FDboost[,1:ncol(M100N1G30)]

load("M100N1G100FDboost.Rdata")
M100N1G100FDboost <- M100N1G100FDboost[,1:ncol(M100N1G30)]

# # M=200
# load("M200N1G30FDboost.Rdata")
# M200N1G30FDboost <- M200N1G30FDboost[,1:ncol(M100N1G30)]
# 
# load("M200N1G100FDboost.Rdata")
# M200N1G100FDboost <- M200N1G100FDboost[,1:ncol(M100N1G30)]

# M=500
load("M500N1G30FDboost.Rdata")
M500N1G30FDboost <- M500N1G30FDboost[,1:ncol(M100N1G30)]

load("M500N1G100FDboost.Rdata")
M500N1G100FDboost <- M500N1G100FDboost[,1:ncol(M100N1G30)]


## merge the resulta of pffr and FDboost    
resNames <- ls()[grep("^M", ls())]

res <- get(resNames[1])
rStart <- 2
if(any(class(res)=="try-error")){
  res <- get(resNames[2])
  rStart <- 3
}

for(r in rStart:length(resNames)){    
  if(any(class(get(resNames[r]))=="try-error")){
    get(resNames[r]) <- NULL
    print(paste(resNames[r], "has class try-error."))
  }else{
    res <- rbind(res, get(resNames[r])) 
  }     
}

#summary(res)
dim(res)

# total number of trajectories
res$N <- res$M*res$ni
# estimation methos
res$mod <- factor(res$model, labels = c("FAMM", "FLAM") )
res$M <- factor(res$M) # , labels = paste("M:", names(table(res$M)))
res$G <- factor(res$Gy) #, labels = paste("G:", names(table(res$Gy)))
res$snrEps <- factor(res$snrEps)

  
save(res, file="boosting.Rdata")
# load("boosting.Rdata")


#### have a look at maximal, minimal and median errors
# library(plyr)
# maxErrors <- ddply(res, ~ N + G + snrEps, function(res) {
#             return(res[which.max(res$relmsey),])
#         })
# minErrors <- ddply(res, ~ N + G + snrEps, function(res) {
#             return(res[which.min(res$relmsey),])
#         })
# medianErrors <- ddply(res, ~ N + G + snrEps, function(res) {
#             return(res[which(rank(res$relmsey)==floor(nrow(res)/2)),])
#         })



#### generate boxplots of errors
library(ggplot2)

pdf("ComputationTime.pdf", width=9, height=7)
ggplot(subset(res, !is.na(time.elapsed)), aes(y=time.elapsed, x=snrEps, fill=mod)) + 
  geom_boxplot(aes(colour = mod), outlier.size=.6) + 
  facet_grid(N~G , labeller="label_both") +
  #theme_clear(base_size=14)   + 
  theme(legend.position="top", legend.direction="horizontal", text=element_text(size = 25)) +
  scale_fill_manual(name = "", values=c("white", "grey80")) +                    
  scale_colour_manual(name = "", values=c("FAMM"= "grey40", "FLAM"="black")) +
  labs(x="snrEps", y="time") +
  scale_y_continuous(breaks=c(1, 2, 5, 10, 20, 60, 120, 300, 600, 1200, 2700, 
                              5400, 10800, 21600, 43200), 
                     trans="log10",
                     labels=c("1s", "2s", "5s", "10s", "20s", "1 min", "2 min", "5 min", 
                              "10 min", "20 min", "45 min", "90 min", "3h", "6h", "12h")) +
  #labs(title="Computation time") + 
  xlab(bquote(SNR[epsilon]))
dev.off()



pdf("reliMSEy.pdf", width=9, height=7)
ggplot(subset(res, !is.na(relmsey)), aes(y=relmsey, fill=mod, colour=mod, x=snrEps)) +
  geom_boxplot(aes(colour = mod), outlier.size=.6) +
  facet_grid( N  ~  G, labeller="label_both") + #G
  scale_y_log10() + 
  theme(legend.position="top", legend.direction="horizontal", text=element_text(size = 30)) +
  scale_fill_manual(name = "", values=c("white", "grey80")) +              
  scale_colour_manual(name = "", values=c("grey40", "black")) + 
  #labs(title="riMSEy")
  #labs(title="reliMSE(Y(t))") + 
  ylab("reliMSE(Y(t))") + xlab(bquote(SNR[epsilon]))
dev.off()


pdf("reliMSEg0.pdf", width=9, height=7)
ggplot(subset(res, !is.na(relmseg0)), aes(y=relmseg0, fill=mod, colour=mod, x=snrEps)) +
  geom_boxplot(aes(colour = mod), outlier.size=.6) +
  facet_grid( N  ~  G, labeller="label_both") + #G
  scale_y_log10() + 
  theme(legend.position="top", legend.direction="horizontal", text=element_text(size = 30)) +
  scale_fill_manual(name = "", values=c("white", "grey80")) +              
  scale_colour_manual(name = "", values=c("grey40", "black")) + 
  ylab(bquote(reliMSE(beta[0](t)))) + xlab(bquote(SNR[epsilon]))
dev.off()

pdf("reliMSEfx1.pdf", width=9, height=7)
ggplot(subset(res, !is.na(relmsefx1)), aes(y=relmsefx1, fill=mod, colour=mod, x=snrEps)) +
  geom_boxplot(aes(colour = mod), outlier.size=.6) +
  facet_grid( N  ~  G, labeller="label_both") + #G
  scale_y_log10() + 
  theme(legend.position="top", legend.direction="horizontal", text=element_text(size = 30)) +
  scale_fill_manual(name = "", values=c("white", "grey80")) +              
  scale_colour_manual(name = "", values=c("grey40", "black")) + 
  #labs(title=bquote(reliMSE(beta[1](s,t)))) +
  ylab(bquote(reliMSE(beta[1](s,t)))) + xlab(bquote(SNR[epsilon])) 
dev.off()

pdf("reliMSEfx2.pdf", width=9, height=7)
ggplot(subset(res, !is.na(relmsefx2)), aes(y=relmsefx2, fill=mod, colour=mod, x=snrEps)) +
  geom_boxplot(aes(colour = mod), outlier.size=.6) +
  facet_grid( N  ~  G, labeller="label_both") + #G
  scale_y_log10() + 
  theme(legend.position="top", legend.direction="horizontal", text=element_text(size = 30)) +
  scale_fill_manual(name = "", values=c("white", "grey80")) +              
  scale_colour_manual(name = "", values=c("grey40", "black")) + 
  #labs(title=bquote(reliMSE(beta[2](s,t)))) +
  ylab(bquote(reliMSE(beta[2](s,t)))) + xlab(bquote(SNR[epsilon]))
dev.off()

Try the FDboost package in your browser

Any scripts or data that you put into this service are public.

FDboost documentation built on May 11, 2018, 1:04 a.m.