Nothing
PSO_design_dual <- function(
design = "optimal", #"minimax"
unified.u = 1, ## specify when design = "unified", u in [0, 1]
method = "default", # "quantum", "dexp" ## make ensemble as default
maxPatients = 50,
nlooks = 1,
Nmin_cohort1 = 10,
Nmin_increase = 5,
weight = 1, ## 1 is H0
b1n = 0.2 ,# Null hypothesis response rate
b1a = 0.4 , # Alternative hypothesis response rate
err1 = 0.05, # Type I error rate
minPower = 0.8,
seed = 1024,
nSwarm = 64,
maxIter = 200){
# library(globpso)
# library(R6)
# library(Rcpp)
# library(RcppArmadillo)
# source("BOP2_functions_twoboundaries_v2.R")
# source("boundcode_equalrand_jsm.R")
# Rcpp::sourceCpp(file="Calculation_twoboundaries_jsm.cpp",cacheDir="cache")
numOfSimForTiralSetting = 10000 # Number of simulations
## Fixed parameters -----
input <- list(
"b1n" = b1n, # Null hypothesis response rate
"b1a" = b1a, # Alternative hypothesis response rate
"err1" = err1, # Type I error rate
"minPower" = minPower,
"seed" = seed
)
miniPatients <- Nmin_cohort1 + nlooks*Nmin_increase
if(maxPatients < miniPatients){
stop(paste0("Error: Please increase maxPatients to more than ", miniPatients ))
}
## Set cohort size -----
cohortSize = function(N, R , w, n_min_cohort1 = Nmin_cohort1, n_min_incre = Nmin_increase){
Nrest = N - R*Nmin_increase - Nmin_cohort1
nobs = c()
extra = 0
for ( i in 1:(R+1)){
if (i == 1){
tmp = Nrest * w[i] + Nmin_cohort1
} else {
tmp = Nrest * w[i] + Nmin_increase + nobs[i-1]
}
extra = extra + round(Nrest * w[i])
nobs = c(nobs, tmp)
}
extra = extra - Nrest
nobs[which.max(w)] = nobs[which.max(w)] - extra
if (nobs[length(nobs)] > N){
nobs[length(nobs)] = N
}
return(nobs)
}
## Build the utility function -----
n_sim = 1
#set.seed(123);
set.seed(input$seed)
seeds <- round(runif(10000)*10^8)
## PSO - comparison -----
## three lambda, three gamma, two delta. 8 parameters
objf <- function(x, inputlist, fcn) {
if (nlooks ==1){ ## when nlooks = 1
b = x[1] ## lambaf
b_grad1 = x[2] ## lambdae 1
b_grad2 = x[3] ## lambdae 2
pow1 = x[4] ## gamma 1
pow2 = x[5] ## gamma 2
pow3 = x[6] ## gamma 3
delta1 = x[7]
delta0 = x[length(x)]
n = x[8]
w1 = x[9]
w_list = c(w1, 1-w1)
} else{
b = x[1] ## lambaf
b_grad1 = x[2] ## lambdae 1
b_grad2 = x[3] ## lambdae 2
pow1 = x[4] ## gamma 1
pow2 = x[5] ## gamma 2
pow3 = x[6] ## gamma 3
delta1 = x[7]
delta0 = x[length(x)]
n = x[8]
n_cohort <- nlooks +1 ## n_cohort is number of cohort
theta <- x[9: (length(x)-1)] ## number of thetas
# w_list <- c()
# w_list[1] <- (cos(theta[1]))^2
# for( ii in 2: (n_cohort-1)){
# w_list[ii] <- (prod(sin(theta[1:(ii-1)]))*cos(theta[ii]))^2
#
# }
# w_list[n_cohort] <- (prod(sin(theta[1:(n_cohort-1)])))^2
# }
#
# if (round(sum(w_list)) != 1) {
# stop("Error: The sum of the elements in w_list must be equal to 1.")
# }
w_list <- numeric(n_cohort)
w_list[1] <- (cos(theta[1]))^2 # First weight
if (n_cohort > 2) {
for(ii in 2:(n_cohort - 1)) {
w_list[ii] <- (prod(sin(theta[1:(ii-1)])) * cos(theta[ii]))^2
}
}
w_list[n_cohort] <- (prod(sin(theta[1:(n_cohort - 1)])))^2 # Last weight
}
if (!all.equal(sum(w_list), 1, tolerance = 1e-6)) {
stop("Error: The sum of the elements in w_list must be approximately equal to 1.")
}
nobs.seq <- cohortSize(N = n, R = nlooks, w = w_list)
#
# temp=.Call("_GBOP2_GetocBiRcpp_dual", seed=inputlist$seed, nsim=numOfSimForTiralSetting,
# contrast=inputlist$contrast, nobs=nobs.seq,
# b = b, b_grad1 = b_grad1, b_grad2 = b_grad2, pow1 = pow1, pow2 = pow2, pow3=pow3,
# dprior = inputlist$dprior, ptrue = inputlist$b1a, phi = inputlist$b1n,
# delta0 = delta0,delta1 = delta1,fff=fcn);
temp= GetocBiRcpp_dual( seed=inputlist$seed, nsim=numOfSimForTiralSetting,
contrast=inputlist$contrast, nobs=nobs.seq,
b = b, b_grad1 = b_grad1, b_grad2 = b_grad2, pow1 = pow1, pow2 = pow2, pow3=pow3,
dprior = inputlist$dprior, ptrue = inputlist$b1a, phi = inputlist$b1n,
delta0 = delta0,delta1 = delta1,fff=fcn);
t1e = temp[[2]]; # t1e
power = temp[[3]]; # power
if (t1e>inputlist$err1 | power<inputlist$minPower){
results = 999
} else{
if(design =="optimal"){ ## optimal
results = weight*temp[[4]] + (1-weight)*temp[[5]]
}else if(design =="minimax"){ ## minimax
n_final = nobs.seq[length(nobs.seq)] ## n_final is total sample size
results = n_final + (weight*temp[[4]] + (1-weight)*temp[[5]])/n_final
}else{ ## unified
n_final = nobs.seq[length(nobs.seq)] ## n_final is total sample size
results = unified.u*n_final + (weight*temp[[4]] + (1-weight)*temp[[5]])/n_final
}
}
return(results)
}
p.n = input$b1n
p.a = input$b1a
inputlist = input
inputlist$contrast = as.matrix(1)
inputlist$dprior = c(inputlist$b1n, 1-inputlist$b1n)
#low_bound <- c(0.01, 0.01, 0.01, 0, 0, 0, 0, 25, 0, 0, 0, 0)
#upp_bound <- c(0.99, 0.99, 0.99, 1, 1, 1, 1, 50, pi/2, pi/2, pi/2, 1) # delta range from 0 to 1
if(nlooks ==1){
low_bound <- c(0.01, 0.01, 0.01, 0, 0, 0, 0, miniPatients, 0, 0)
upp_bound <- c(0.99, 0.99, 0.99, 1, 1, 1, 1, maxPatients, 1, 1)
}else{
theta_L <- rep(0, nlooks) ## lower bound of theta
theta_U <- rep(pi/2, nlooks) ## upper bound of theta
low_bound <- c(0.01, 0.01, 0.01, 0, 0, 0, 0, miniPatients, theta_L, 0)
upp_bound <- c(0.99, 0.99, 0.99, 1, 1, 1, 1, maxPatients, theta_U, 1)
}
if (method == "default"){
## default
## getPSOInfo:Create a list with PSO parameters for Minimization.
alg_setting <- getPSOInfo(freeRun = 1, nSwarm = nSwarm, maxIter=maxIter) # default if "basic" Linearly Decreasing Weight PSO
} else if (method == "quantum"){
## quantum:
alg_setting <- getPSOInfo(psoType = "quantum", freeRun = 1, nSwarm = nSwarm, maxIter=maxIter)
} else {
alg_setting <- getPSOInfo(psoType = "dexp", freeRun = 1, nSwarm = nSwarm, maxIter = maxIter)
}
for ( i in n_sim){
res <- globpso(objFunc = objf, lower = low_bound, upper = upp_bound,
fixed = NULL, PSO_INFO = alg_setting,
inputlist = inputlist, fcn = maxresp_dual, seed=seeds[i])
pars = res$par
if (nlooks ==1){ ## when nlooks = 1
b = pars[1]
b_grad1 = pars[2]
b_grad2 = pars[3]
pow1 = pars[4]
pow2 = pars[5]
pow3 = pars[6]
delta1 = pars[7]
n = pars[8]
w_list <- c(res$par[,9], 1-res$par[,9])
delta0 = pars[length(pars)]
} else{ ## when nlooks >=2
b = pars[1]
b_grad1 = pars[2]
b_grad2 = pars[3]
pow1 = pars[4]
pow2 = pars[5]
pow3 = pars[6]
delta1 = pars[7]
n = pars[8]
delta0 = pars[length(pars)]
n_cohort <- nlooks +1 ## n_cohort is number of cohort
theta <- pars[9: (length(pars)-1)] ## number of thetas
w_list <- c()
w_list[1] <- (cos(theta[1]))^2
for( ii in 2: n_cohort-1){
w_list[ii] <- (prod(sin(theta[1:(ii-1)]))*cos(theta[ii]))^2
}
w_list[n_cohort] <- (prod(sin(theta[1:(n_cohort-1)])))^2
}
nobs2 <- cohortSize(N = n, R = nlooks, w = w_list)
bd = t(getboundary_dual(dprior=c(p.n, 1-p.n),contrast=as.matrix(1),
nobs=nobs2,b=b,b_grad1=b_grad1,b_grad2=b_grad2,
pow1=pow1, pow2 = pow2, pow3=pow3,
phi=input$b1n,delta0=delta0,delta1=delta1));
# power_result = .Call("_GBOP2_GetocBiRcpp_dual", seed=input$seed, nsim=numOfSimForTiralSetting,
# contrast=as.matrix(1), nobs=(nobs2),
# b=b, b_grad1=b_grad1,b_grad2=b_grad2,
# pow1=pow1, pow2 = pow2, pow3=pow3,
# dprior= c(p.n,1-p.n), ptrue=p.a, phi=p.n,
# delta0=delta0,delta1=delta1, fff=maxresp_dual)
power_result = GetocBiRcpp_dual( seed=input$seed, nsim=numOfSimForTiralSetting,
contrast=as.matrix(1), nobs=(nobs2),
b=b, b_grad1=b_grad1,b_grad2=b_grad2,
pow1=pow1, pow2 = pow2, pow3=pow3,
dprior= c(p.n,1-p.n), ptrue=p.a, phi=p.n,
delta0=delta0,delta1=delta1, fff=maxresp_dual)
}
## Calculate expected sample size
expected_sample = weight*power_result[[4]] + (1-weight)*power_result[[5]]
## modify this
bd[, 2][length(bd[, 2])] <- bd[, 3][length(bd[, 3])] -1
results_list <- list(
"function" = "PSO_design_dual",
"design" = design,
"weight" = weight,
"method" = method,
"parameters" = list("lambda1" = b,"lambda_grad1" = b_grad1, "lambda_grad2" = b_grad2, "Gamma_1" = pow1,"Gamma_2" = pow2,"Gamma_3" = pow3,"delta0" = delta0,"delta1" = delta1),
"cohort" = as.list(nobs2),"boundary"=list("1" = bd[, 2], "2" = bd[, 3]), ## bd2 is first boundary, bd3 is second boundary
"Type I Error"= power_result[[2]],
"Power" = power_result[[3]],
"Expected Sample Size" = expected_sample,
"Utility" = res$val
)
class(results_list)<-"gbop2"
return(results_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.