Nothing
res.check <- function(x, intervals = FALSE, n.sim = 100, prob.lev = 0.05, ...){
if(x$triv == TRUE ) stop("This function is not suitable for trivariate probit models.")
if(x$VC$ccss == "yes" && intervals == TRUE) stop("Intervals not available yet for residuals from sample selection models.")
if(x$Model == "ROY" && intervals == TRUE) stop("Intervals not available yet for residuals from Roy models.")
y1m <- y2m <- y3m <- NA
qr <- qr1 <- qr2 <- NULL
if(x$univar.gamlss == FALSE){###
if(x$surv.flex == TRUE){ ###
if((!is.null(x$type.cens1) && x$type.cens1 != "R") || (!is.null(x$type.cens2) && x$type.cens2 != "R")) stop("Only case of right censoring implemented. Get in touch to check progress. ")
if(x$end.surv != TRUE) par(mfrow = c(1, 2))
if(x$margins[1] %in% x$bl && x$end.surv == FALSE){
qr1 <- -log(x$fit$p1)
H1 <- -log(survfit(Surv(qr1, x$cens1) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
#hist(qr1, freq = FALSE, xlab = "Cox-Snell residuals", ...)
#lines(density(qr1, adjust = 2), lwd = 2)
qqplot(qr1, H1, xlab = "Cox-Snell residuals", ylab = "Cumulative hazards of residuals", ...)
abline(0, 1)
}
if(x$margins[1] %in% c(x$VC$m2,x$VC$m3) ){
p1 <- distrHsAT(x$y1, x$eta1, x$sigma21, x$nu1, x$margins[1], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
qr1 <- qnorm(p1, ...)
#hist(qr1, freq = FALSE, xlab = xlab, ...)
#lines(density(qr1, adjust = 2), lwd = 2)
if(intervals == FALSE){qqnorm(qr1, ...); abline(0, 1)}
if(intervals == TRUE) int.rescheck(x, x$VC$margins[1], n.rep = n.sim, prob.lev = prob.lev, y2m = NULL, eq = 1, ...)
}
qr2 <- -log(x$fit$p2)
H2 <- -log(survfit(Surv(qr2, x$cens2) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
#hist(qr2, freq = FALSE, xlab = "Cox-Snell residuals", ...)
#lines(density(qr2, adjust = 2), lwd = 2)
qqplot(qr2, H2, xlab = "Cox-Snell residuals", ylab = "Cumulative hazards of residuals", ...)
abline(0, 1)
}###
if(x$surv.flex == FALSE){##
mbin <- c("probit", "logit", "cloglog")
if(x$VC$margins[1] %in% mbin && x$VC$margins[2] %in% mbin ) stop("Diagnostic plot(s) not available given the chosen margin(s).")
if(x$Cont == "NO"){
y2 <- x$y2
eta2 <- x$eta2
sigma2 <- x$sigma2
nu <- x$nu
if(x$VC$margins[2] %in% c("DGP","DGPII","DGP0")) stop("This function is not suitable for the chosen distribution. \nGet in touch for more info.")
if(x$VC$margins[3] %in% c("DGP","DGPII","DGP0")) stop("This function is not suitable for the chosen distribution. \nGet in touch for more info.")
#
#if(x$VC$margins[2] %in% c("ZTP")){
# ly2 <- length(y2)
# y2m <- list()
# my2 <- max(y2)
# for(i in 1:ly2){ y2m[[i]] <- seq(1, y2[i]); length(y2m[[i]]) <- my2}
# y2m <- do.call(rbind, y2m)
# }
#
#
#
#if(x$VC$margins[2] %in% c("DGP","DGPII","DGP0")){
# ly2 <- length(y2)
# y2m <- list()
# my2 <- max(y2)
# for(i in 1:ly2){ y2m[[i]] <- seq(0, y2[i]); length(y2m[[i]]) <- my2+1}
# y2m <- do.call(rbind, y2m)
# }
#
#if(x$Model == "ROY"){
#
# y3 <- x$y3
#
#if(x$VC$margins[3] %in% c("ZTP")){
# ly3 <- length(y3)
# y3m <- list()
# my3 <- max(y3)
# for(i in 1:ly3){ y3m[[i]] <- seq(1, y3[i]); length(y3m[[i]]) <- my3}
# y3m <- do.call(rbind, y3m)
# }
#
#
#
#if(x$VC$margins[3] %in% c("DGP","DGPII","DGP0")){
# ly3 <- length(y3)
# y3m <- list()
# my3 <- max(y3)
# for(i in 1:ly3){ y3m[[i]] <- seq(0, y3[i]); length(y3m[[i]]) <- my3+1}
# y3m <- do.call(rbind, y3m)
# }
#
#}
#
if(x$VC$ccss == "yes"){ # for the time being, to be coherent with eta1, I use eta2 etc. calculated from X2s etc. (more relevant for splines)
# same reasoning for Roy models
p1 <- x$p1[x$inde]
p0 <- mm( 1 - p1, min.pr = 1e-300, max.pr = 0.9999999999999999)
eta2 <- eta2[x$inde]
theta <- x$theta
if(length(theta) > 1) theta <- theta[x$inde]
if(!is.null(x$X3) && !(x$VC$margins[2] %in% x$VC$m1d) ){
sigma2 <- sigma2[x$inde]
nu <- nu[x$inde]
}
}
if(x$VC$margins[2] %in% c(x$VC$m2,x$VC$m3) && x$VC$ccss != "yes" && x$Model != "ROY"){
p <- distrHsAT(y2, eta2, sigma2, nu, x$margins[2], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[2] %in% c("TW")){ if( any(y2 == 0) == TRUE ) p[y2 == 0] <- runif(sum(y2 == 0), min = 1e-300, max = p[y2 == 0]) }
qr <- qnorm(p, ...)
}
if(x$VC$margins[2] %in% c(x$VC$m2, x$VC$m3) && x$VC$ccss == "yes" && x$Model != "ROY"){
p2 <- distrHsAT(y2, eta2, sigma2, nu, x$margins[2], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
p12 <- mm(BiCDF(p0, p2, x$nC, theta, x$dof), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
p <- mm( (p2 - p12)/p1, min.pr = 1e-300, max.pr = 0.9999999999999999)
if(x$VC$margins[2] %in% c("TW")){ if( any(y2 == 0) == TRUE ) p[y2 == 0] <- runif(sum(y2 == 0), min = 1e-300, max = p[y2 == 0]) }
qr <- qnorm(p, ...)
}
if(x$VC$margins[2] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d) && x$VC$ccss != "yes" && x$Model != "ROY"){
pd <- distrHsATDiscr(y2, eta2, sigma2, nu, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc2)
p <- pd$p2
d <- pd$pdf2
if(intervals == TRUE) set.seed(100)
qr <- qnorm( runif(y2, p - d, p), ... )
}
if(x$VC$margins[2] %in% c(x$VC$m1d, x$VC$m2d, x$VC$m3d) && x$VC$ccss == "yes" && x$Model != "ROY"){
p2 <- distrHsATDiscr(y2, eta2, sigma2, nu, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc2)$p2
p12 <- mm(BiCDF(p0, p2, x$nC, theta, x$dof), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
p <- mm( (p2 - p12)/p1, min.pr = 1e-300, max.pr = 0.9999999999999999)
y2a <- y2; y2a <- y2 - 1; ind.y2a <- y2a < 0; y2a <- ifelse(y2a < 0, 0, y2a)
p2 <- distrHsATDiscr(y2a, eta2, sigma2, nu, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc2)$p2
p12 <- mm(BiCDF(p0, p2, x$nC, theta, x$dof), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
pm1 <- mm( (p2 - p12)/p1, min.pr = 1e-300, max.pr = 0.9999999999999999)
pm1[ind.y2a] <- 0
pm1 <- ifelse(pm1 < 0, 0, pm1) # these needed for very bad model fits
p <- ifelse(p < 0, 0, p )
pm1 <- ifelse(pm1 > p, p, pm1)
ru <- runif(y2, pm1, p)
ru <- ifelse(ru == 0, 1e-16, ru)
ru <- ifelse(ru > 0.999999, 0.999999, ru)
qr <- qnorm( ru, ...)
}
if(x$Model == "ROY"){
y2 <- x$y2
y3 <- x$y3
eta2 <- x$eta2[x$inde0]
eta3 <- x$eta3[x$inde1]
sigma1 <- x$sigma2[x$inde0]
sigma2 <- x$sigma3[x$inde1]
nu1 <- x$nu2[x$inde0]
nu2 <- x$nu3[x$inde1]
theta1 <- x$theta12[x$inde0]
theta2 <- x$theta13[x$inde1]
p1eq2 <- x$p1[x$inde0]
p0eq2 <- 1 - p1eq2
p1eq3 <- x$p1[x$inde1]
p0eq3 <- 1 - p1eq3
if(x$VC$margins[2] %in% c(x$VC$m2, x$VC$m3)){
p2 <- distrHsAT(y2, eta2, sigma1, nu1, x$margins[2], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
p12 <- mm(BiCDF(p0eq2, p2, x$nC1, theta1, x$dof12), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
p <- mm(p12/p0eq2, min.pr = 1e-300, max.pr = 0.9999999999999999)
if(x$VC$margins[2] %in% c("TW")){ if( any(y2 == 0) == TRUE ) p[y2 == 0] <- runif(sum(y2 == 0), min = 1e-300, max = p[y2 == 0]) }
qr <- qnorm(p, ...)
}
if(x$VC$margins[3] %in% c(x$VC$m2, x$VC$m3)){
p2 <- distrHsAT(y3, eta3, sigma2, nu2, x$margins[3], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
p12 <- mm(BiCDF(p0eq3, p2, x$nC2, theta2, x$dof13), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
p <- mm((p2 - p12)/p1eq3, min.pr = 1e-300, max.pr = 0.9999999999999999)
if(x$VC$margins[3] %in% c("TW")){ if( any(y3 == 0) == TRUE ) p[y3 == 0] <- runif(sum(y3 == 0), min = 1e-300, max = p[y3 == 0]) }
qr2 <- qnorm(p, ...)
}
if(x$VC$margins[2] %in% c(x$VC$m1d, x$VC$m2d, x$VC$m3d)){
p2 <- distrHsATDiscr(y2, eta2, sigma1, nu1, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc1)$p2
p12 <- mm(BiCDF(p0eq2, p2, x$nC1, theta1, x$dof12), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
p <- mm(p12/p0eq2, min.pr = 1e-300, max.pr = 0.9999999999999999)
y2a <- y2; y2a <- y2 - 1; ind.y2a <- y2a < 0; y2a <- ifelse(y2a < 0, 0, y2a)
p2 <- distrHsATDiscr(y2a, eta2, sigma1, nu1, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc1)$p2
p12 <- mm(BiCDF(p0eq2, p2, x$nC1, theta1, x$dof12), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
pm1 <- mm(p12/p0eq2, min.pr = 1e-300, max.pr = 0.9999999999999999)
pm1[ind.y2a] <- 0
pm1 <- ifelse(pm1 < 0, 0, pm1)
p <- ifelse(p < 0, 0, p )
pm1 <- ifelse(pm1 > p, p, pm1)
ru <- runif(y2, pm1, p)
ru <- ifelse(ru == 0, 1e-16, ru)
ru <- ifelse(ru > 0.999999, 0.999999, ru)
qr <- qnorm(ru, ...)
}
if(x$VC$margins[3] %in% c(x$VC$m1d, x$VC$m2d, x$VC$m3d)){
p2 <- distrHsATDiscr(y3, eta3, sigma2, nu2, x$margins[3], y2m = y3m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc2)$p2
p12 <- mm(BiCDF(p0eq3, p2, x$nC2, theta2, x$dof13), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
p <- mm((p2 - p12)/p1eq3, min.pr = 1e-300, max.pr = 0.9999999999999999)
y3a <- y3; y3a <- y3 - 1; ind.y3a <- y3a < 0; y3a <- ifelse(y3a < 0, 0, y3a)
p2 <- distrHsATDiscr(y3a, eta3, sigma2, nu2, x$margins[3], y2m = y3m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc2)$p2
p12 <- mm(BiCDF(p0eq3, p2, x$nC2, theta2, x$dof13), min.pr = x$VC$min.pr, max.pr = x$VC$max.pr )
pm1 <- mm((p2 - p12)/p1eq3, min.pr = 1e-300, max.pr = 0.9999999999999999)
pm1[ind.y3a] <- 0
pm1 <- ifelse(pm1 < 0, 0, pm1)
p <- ifelse(p < 0, 0, p )
pm1 <- ifelse(pm1 > p, p, pm1)
ru <- runif(y3, pm1, p)
ru <- ifelse(ru == 0, 1e-16, ru)
ru <- ifelse(ru > 0.999999, 0.999999, ru)
qr2 <- qnorm(ru, ...)
}
}
if(x$Model != "ROY"){
#par(mfrow = c(1, 1))
#hist(qr, freq = FALSE, xlab = xlab, ...)
#lines(density(qr, adjust = 2), lwd = 2)
if(intervals == FALSE){qqnorm(qr, ...); abline(0, 1)}
if(intervals == TRUE) int.rescheck(x, x$VC$margins[2], n.rep = n.sim, prob.lev = prob.lev, y2m = y2m, eq = 1, ...)
}
if(x$Model == "ROY"){
par(mfrow = c(1, 2))
#hist(qr, freq = FALSE, xlab = xlab, ...)
#lines(density(qr, adjust = 2), lwd = 2)
qqnorm(qr, ...); abline(0, 1)
#hist(qr2, freq = FALSE, xlab = xlab, ...)
#lines(density(qr2, adjust = 2), lwd = 2)
qqnorm(qr2, ...); abline(0, 1)
} # ROY
#if(intervals == FALSE){qqnorm(qr); abline(0, 1)}
#if(intervals == TRUE){xx <- x; xx$n <- x$n.se0; xx$eta2 <- x$eta2[x$inde0]; xx$sigma2 <- x$sigma1[x$inde0]; xx$nu <- x$nu1[x$inde0]; int.postcheck(xx, xx$VC$margins[2], n.rep = n.sim, prob.lev = prob.lev, y2m = y2m); rm(xx)}
#if(intervals == FALSE){}
#
#if(intervals == TRUE){
#
#xx <- x
#xx$n <- x$n.se1
#
#xx$eta2 <- x$eta3[x$inde1]
#xx$y2 <- x$y3
#xx$sigma2 <- x$sigma2[x$inde1]
#xx$nu <- x$nu2[x$inde1]
#
#int.postcheck(xx, x$VC$margins[3], n.rep = n.sim, prob.lev = prob.lev, y2m = y3m)
#
#rm(xx)
#
#}
} # x$Cont == "NO"
if(x$Cont == "YES"){
y1 <- x$y1
y2 <- x$y2
y1m <- y2m <- NA
if(x$VC$margins[1] %in% c("DGP","DGPII","DGP0")) stop("This function is not suitable for the chosen distribution. \nGet in touch for more info.")
if(x$VC$margins[2] %in% c("DGP","DGPII","DGP0")) stop("This function is not suitable for the chosen distribution. \nGet in touch for more info.")
#
#if(x$VC$margins[1] %in% c("ZTP")){
#
# ly1 <- length(y1)
# y1m <- list()
# my1 <- max(y1)
# for(i in 1:ly1){ y1m[[i]] <- seq(1, y1[i]); length(y1m[[i]]) <- my1}
# y1m <- do.call(rbind, y1m)
#
#}
#
#
#if(x$VC$margins[2] %in% c("ZTP")){
#
# ly2 <- length(y2)
# y2m <- list()
# my2 <- max(y2)
# for(i in 1:ly2){ y2m[[i]] <- seq(1, y2[i]); length(y2m[[i]]) <- my2}
# y2m <- do.call(rbind, y2m)
#
#}
#
#
#
#
#if(x$VC$margins[1] %in% c("DGP","DGPII","DGP0")){
#
# ly1 <- length(y1)
# y1m <- list()
# my1 <- max(y1)
# for(i in 1:ly1){ y1m[[i]] <- seq(0, y1[i]); length(y1m[[i]]) <- my1+1}
# y1m <- do.call(rbind, y1m)
#
#}
#
#
#if(x$VC$margins[2] %in% c("DGP","DGPII","DGP0")){
#
# ly2 <- length(y2)
# y2m <- list()
# my2 <- max(y2)
# for(i in 1:ly2){ y2m[[i]] <- seq(0, y2[i]); length(y2m[[i]]) <- my2+1}
# y2m <- do.call(rbind, y2m)
#
#}
#
if(x$VC$margins[1] %in% c(x$VC$m2,x$VC$m3)) {p1 <- distrHsAT(x$y1, x$eta1, x$sigma21, x$nu1, x$margins[1], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[1] %in% c("TW")){ if( any(x$y1 == 0) == TRUE ) p1[x$y1 == 0] <- runif(sum(x$y1 == 0), min = 1e-300, max = p1[x$y1 == 0]) }
}
if(x$VC$margins[1] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(x$y1, x$eta1, x$sigma21, x$nu1, x$margins[1], y2m = y1m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc1)
p <- pd$p2
d <- pd$pdf2
set.seed(100)
p1 <- runif(y1, p - d, p)
}
if(x$VC$margins[2] %in% c(x$VC$m2,x$VC$m3)){ p2 <- distrHsAT(x$y2, x$eta2, x$sigma22, x$nu2, x$margins[2], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[2] %in% c("TW")){ if( any(x$y2 == 0) == TRUE ) p2[x$y2 == 0] <- runif(sum(x$y2 == 0), min = 1e-300, max = p2[x$y2 == 0]) }
}
if(x$VC$margins[2] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(x$y2, x$eta2, x$sigma22, x$nu2, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc2)
p <- pd$p2
d <- pd$pdf2
set.seed(100)
p2 <- runif(y2, p - d, p)
}
par(mfrow = c(1, 2))
qr1 <- qnorm(p1, ...)
#hist(qr1, freq = FALSE, xlab = xlab, ...)
#lines(density(qr1, adjust = 2), lwd = 2)
if(intervals == FALSE){qqnorm(qr1, ...); abline(0, 1)}
if(intervals == TRUE) int.rescheck(x, x$VC$margins[1], n.rep = n.sim, prob.lev = prob.lev, y2m = y1m, eq = 1, ...)
qr2 <- qnorm(p2, ...)
#hist(qr2, freq = FALSE, xlab = xlab2, ...)
#lines(density(qr2, adjust = 2),lwd=2)
if(intervals == FALSE){qqnorm(qr2, ...); abline(0, 1)}
if(intervals == TRUE) int.rescheck(x, x$VC$margins[2], n.rep = n.sim, prob.lev = prob.lev, y2m = y2m, eq = 2, ...)
}
}##
}###
if(x$univar.gamlss == TRUE){
if(x$surv.flex == FALSE){ ###
if(x$VC$margins[1] %in% c("GEVlink") ) stop("Diagnostic plot(s) not available given the chosen margin(s).")
y1 <- x$y1
if(x$VC$margins[1] %in% c("DGP","DGPII","DGP0")) stop("This function is not suitable for the chosen distribution. \nGet in touch for more info.")
#
#if(x$VC$margins[1] %in% c("DGP","DGPII","DGP0")){
# ly1 <- length(y1)
# y1m <- list()
# my1 <- max(y1)
# for(i in 1:ly1){ y1m[[i]] <- seq(0, y1[i]); length(y1m[[i]]) <- my1+1}
# y1m <- do.call(rbind, y1m)
# }
#
#if(x$VC$margins[1] %in% c("ZTP")){
# ly1 <- length(y1)
# y1m <- list()
# my1 <- max(y1)
# for(i in 1:ly1){ y1m[[i]] <- seq(1, y1[i]); length(y1m[[i]]) <- my1}
# y1m <- do.call(rbind, y1m)
# }
#
if(x$VC$margins[1] %in% c(x$VC$m2,x$VC$m3)) p1 <- distrHsAT(x$y1, x$eta1, x$sigma2, x$nu, x$margins[1], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[1] %in% c("TW")){ if( any(x$y1 == 0) == TRUE ) p1[x$y1 == 0] <- runif(sum(x$y1 == 0), min = 1e-300, max = p1[x$y1 == 0]) }
if(x$VC$margins[1] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(x$y1, x$eta1, x$sigma2, x$nu, x$margins[1], y2m = y1m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr,
max.pr = x$VC$max.pr, left.trunc = x$VC$left.trunc)
p <- pd$p2
d <- pd$pdf2
p1 <- runif(y1, p - d, p)
}
#par(mfrow = c(1, 1))
qr <- qnorm(p1, ...)
#hist(qr, freq = FALSE, xlab = xlab, ...)
#lines(density(qr, adjust = 2), lwd = 2)
if(intervals == FALSE){qqnorm(qr, ...); abline(0, 1)}
if(intervals == TRUE) int.rescheck(x, x$VC$margins[1], n.rep = n.sim, prob.lev = prob.lev, y2m = y1m, eq = 1, ...)
}###
if(x$surv.flex == TRUE){ ###
if(x$type.cens != "R") stop("Only case of right censoring implemented. Get in touch to check progress. ")
#par(mfrow = c(1, 1))
qr <- -log(x$fit$p1)
H <- -log(survfit(Surv(qr, x$cens) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
#hist(qr, freq = FALSE, xlab = "Cox-Snell residuals", ...)
#lines(density(qr, adjust = 2), lwd = 2)
qqplot(qr, H, xlab = "Cox-Snell residuals", ylab = "Cumulative hazards of residuals", ...)
abline(0, 1)
}###
}
L <- list(qr = qr, qr1 = qr1, qr2 = as.numeric(qr2))
invisible(L)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.