NormalizeUmatrix: Normalize Umatrix

Description Usage Arguments Details Value Author(s) References Examples

View source: R/NormalizeUmatrix.R

Description

Normalizing the U-matrix using the abstact U-Matrix concept [Loetsch/Ultsch, 2014].

Usage

1
NormalizeUmatrix(Data, Umatrix, BestMatches)

Arguments

Data

[1:n,1:d] numerical matrix of data with n cases and d variables

Umatrix

[1:lines,1:Columns] matrix of U-heights

BestMatches

[1:n,1:2] Bestmatching units.

Details

see publication [Loetsch/Ultsch, 2014]..

Value

Normalized Umatrix[1:lines,1:Columns] using the abstact U-Matrix concept.

Author(s)

Felix Pape, Michael Thrun

References

Loetsch, J., Ultsch, A.: Exploiting the structures of the U-matrix, in Villmann, T., Schleif, F.-M., Kaden, M. & Lange, M. (eds.), Proc. Advances in Self-Organizing Maps and Learning Vector Quantization, pp. 249-257, Springer International Publishing, Mittweida, Germany, 2014.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data("Chainlink")
Data=Chainlink$Data
Cls=Chainlink$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
#see also ProjectionBasedClustering package for other common projection methods


  resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
  ## Normalization
  normalizedUmatrix=NormalizeUmatrix(Data,resUmatrix$Umatrix,resUmatrix$Bestmatches)
  ## visualization
  TopviewTopographicMap(GeneralizedUmatrix = normalizedUmatrix,resUmatrix$Bestmatches)

GeneralizedUmatrix documentation built on Jan. 16, 2021, 5:37 p.m.