View source: R/NormalizeUmatrix.R
NormalizeUmatrix | R Documentation |
Normalizing the U-matrix using the abstact U-Matrix concept [Loetsch/Ultsch, 2014].
NormalizeUmatrix(Data, Umatrix, BestMatches)
Data |
[1:n,1:d] numerical matrix of data with n cases and d variables |
Umatrix |
[1:lines,1:Columns] matrix of U-heights |
BestMatches |
[1:n,1:2] Bestmatching units. |
see publication [Loetsch/Ultsch, 2014]..
Normalized Umatrix[1:lines,1:Columns] using the abstact U-Matrix concept.
Felix Pape, Michael Thrun
Loetsch, J., Ultsch, A.: Exploiting the structures of the U-matrix, in Villmann, T., Schleif, F.-M., Kaden, M. & Lange, M. (eds.), Proc. Advances in Self-Organizing Maps and Learning Vector Quantization, pp. 249-257, Springer International Publishing, Mittweida, Germany, 2014.
data("Chainlink") Data=Chainlink$Data Cls=Chainlink$Cls InputDistances=as.matrix(dist(Data)) res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE) ProjectedPoints=as.matrix(res$points) #see also ProjectionBasedClustering package for other common projection methods resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints) ## Normalization normalizedUmatrix=NormalizeUmatrix(Data,resUmatrix$Umatrix,resUmatrix$Bestmatches) ## visualization TopviewTopographicMap(GeneralizedUmatrix = normalizedUmatrix,resUmatrix$Bestmatches)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.