Nothing
# This is the function for high-dimensional mediation analysis using de-biased lasso
#' High-dimensional mediation analysis with de-biased lasso penalty
#'
#' \code{hima_dblasso} is used to estimate and test high-dimensional mediation effects using de-biased lasso penalty.
#'
#' @param X a vector of exposure. Do not use \code{data.frame} or \code{matrix}.
#' @param M a \code{data.frame} or \code{matrix} of high-dimensional mediators. Rows represent samples, columns represent variables.
#' @param Y a vector of outcome. Can be either continuous or binary (0-1). Do not use \code{data.frame} or \code{matrix}.
#' @param COV a \code{data.frame} or \code{matrix} of covariates dataset for testing the association M ~ X and Y ~ M.
#' @param topN an integer specifying the number of top markers from sure independent screening.
#' Default = \code{NULL}. If \code{NULL}, \code{topN} will be \code{ceiling(n/log(n))},
#' where \code{n} is the sample size. If the sample size is greater than topN (pre-specified or calculated), all
#' mediators will be included in the test (i.e. low-dimensional scenario).
#' @param scale logical. Should the function scale the data? Default = \code{TRUE}.
#' @param FDRcut HDMT pointwise FDR cutoff applied to select significant mediators. Default = \code{0.05}.
#' @param verbose logical. Should the function be verbose? Default = \code{FALSE}.
#'
#' @return A data.frame containing mediation testing results of significant mediators (FDR <\code{FDRcut}).
#' \describe{
#' \item{Index: }{mediation name of selected significant mediator.}
#' \item{alpha_hat: }{coefficient estimates of exposure (X) --> mediators (M) (adjusted for covariates).}
#' \item{alpha_se: }{standard error for alpha.}
#' \item{beta_hat: }{coefficient estimates of mediators (M) --> outcome (Y) (adjusted for covariates and exposure).}
#' \item{beta_se: }{standard error for beta.}
#' \item{IDE: }{mediation (indirect) effect, i.e., alpha*beta.}
#' \item{rimp: }{relative importance of the mediator.}
#' \item{pmax: }{joint raw p-value of selected significant mediator (based on HDMT pointwise FDR method).}
#' }
#'
#' @references Perera C, Zhang H, Zheng Y, Hou L, Qu A, Zheng C, Xie K, Liu L.
#' HIMA2: high-dimensional mediation analysis and its application in epigenome-wide DNA methylation data.
#' BMC Bioinformatics. 2022. DOI: 10.1186/s12859-022-04748-1. PMID: 35879655; PMCID: PMC9310002
#'
#' @examples
#' \dontrun{
#' # Note: In the following examples, M1, M2, and M3 are true mediators.
#'
#' # Y is continuous and normally distributed
#' # Example:
#' head(ContinuousOutcome$PhenoData)
#'
#' hima_dblasso.fit <- hima_dblasso(
#' X = ContinuousOutcome$PhenoData$Treatment,
#' Y = ContinuousOutcome$PhenoData$Outcome,
#' M = ContinuousOutcome$Mediator,
#' COV = ContinuousOutcome$PhenoData[, c("Sex", "Age")],
#' scale = FALSE, # Disabled only for simulation data
#' FDRcut = 0.05,
#' verbose = TRUE
#' )
#' hima_dblasso.fit
#' }
#'
#' @export
hima_dblasso <- function(X, M, Y, COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE) {
n <- nrow(M)
p <- ncol(M)
# Process required variables
X <- process_var(X, scale)
M <- process_var(M, scale)
# Process optional covariates
COV <- process_var(COV, scale)
if (scale && verbose) message("Data scaling is completed.")
if (is.null(COV)) {
MZX <- cbind(M, X)
XZ <- X
q <- 0
} else {
MZX <- cbind(M, COV, X)
XZ <- cbind(X, COV)
q <- ncol(COV)
}
if (is.null(topN)) d <- ceiling(2 * n / log(n)) else d <- topN # the number of top mediators that associated with exposure (X)
d <- min(p, d) # if d > p select all mediators
M_ID_name <- colnames(M)
if (is.null(M_ID_name)) M_ID_name <- seq_len(p)
#########################################################################
########################### (Step 1) SIS step ###########################
#########################################################################
message("Step 1: Sure Independent Screening ...", " (", format(Sys.time(), "%X"), ")")
# the number of top mediators that associated with exposure (X)
if (is.null(topN)) d_0 <- ceiling(2 * n / log(n)) else d_0 <- topN
d_0 <- min(p, d_0) # if d > p select all mediators
beta_SIS <- matrix(0, 1, p)
# Estimate the regression coefficients beta (mediators --> outcome)
for (i in 1:p) {
ID_S <- c(i, (p + 1):(p + q + 1))
MZX_SIS <- MZX[, ID_S]
fit <- lsfit(MZX_SIS, Y, intercept = TRUE)
beta_SIS[i] <- fit$coefficients[2]
}
# Estimate the regression coefficients alpha (exposure --> mediators)
alpha_SIS <- matrix(0, 1, p)
for (i in 1:p) {
fit_a <- lsfit(XZ, M[, i], intercept = TRUE)
est_a <- matrix(coef(fit_a))[2]
alpha_SIS[i] <- est_a
}
# Select the d_0 number of mediators with top largest effect
ab_SIS <- alpha_SIS * beta_SIS
ID_SIS <- which(-abs(ab_SIS) <= sort(-abs(ab_SIS))[d_0])
d <- length(ID_SIS)
M_ID_name_SIS <- M_ID_name[ID_SIS]
if (verbose) message(" Top ", d, " mediators are selected: ", paste0(M_ID_name_SIS, collapse = ", "))
#########################################################################
################### (Step 2) De-biased Lasso Estimates ##################
#########################################################################
message("Step 2: De-biased Lasso Estimates ...", " (", format(Sys.time(), "%X"), ")")
if (verbose) {
if (is.null(COV)) {
message(" No covariate was adjusted.")
} else {
message(" Adjusting for covariate(s): ", paste0(colnames(COV), collapse = ", "))
}
}
P_beta_SIS <- matrix(0, 1, d)
beta_DLASSO_SIS_est <- matrix(0, 1, d)
beta_DLASSO_SIS_SE <- matrix(0, 1, d)
MZX_SIS <- MZX[, c(ID_SIS, (p + 1):(p + q + 1))]
DLASSO_fit <- suppressMessages(hdi::lasso.proj(x = MZX_SIS, y = Y, family = "gaussian"))
beta_DLASSO_SIS_est <- DLASSO_fit$bhat[1:d]
beta_DLASSO_SIS_SE <- DLASSO_fit$se
P_beta_SIS <- t(DLASSO_fit$pval[1:d])
################### Estimate alpha ################
alpha_SIS_est <- matrix(0, 1, d)
alpha_SIS_SE <- matrix(0, 1, d)
P_alpha_SIS <- matrix(0, 1, d)
for (i in 1:d) {
fit_a <- lsfit(XZ, M[, ID_SIS[i]], intercept = TRUE)
est_a <- matrix(coef(fit_a))[2]
se_a <- ls.diag(fit_a)$std.err[2]
sd_1 <- abs(est_a) / se_a
P_alpha_SIS[i] <- 2 * (1 - pnorm(sd_1, 0, 1)) ## the SIS for alpha
alpha_SIS_est[i] <- est_a
alpha_SIS_SE[i] <- se_a
}
#########################################################################
################ (step 3) The multiple-testing procedure ###############
#########################################################################
message("Step 3: Joint significance test ...", " (", format(Sys.time(), "%X"), ")")
PA <- cbind(t(P_alpha_SIS), (t(P_beta_SIS)))
P_value <- apply(PA, 1, max) # The joint p-values for SIS variable
N0 <- dim(PA)[1] * dim(PA)[2]
input_pvalues <- PA + matrix(runif(N0, 0, 10^{-10}), dim(PA)[1], 2)
# Estimate the proportions of the three component nulls
nullprop <- null_estimation(input_pvalues)
# Compute the estimated pointwise FDR for every observed p-max
fdrcut <- HDMT::fdr_est(nullprop$alpha00,
nullprop$alpha01,
nullprop$alpha10,
nullprop$alpha1,
nullprop$alpha2,
input_pvalues,
exact = 0
)
ID_fdr <- which(fdrcut <= FDRcut)
# Following codes extract the estimates for mediators with fdrcut<=0.05
beta_hat_est <- beta_DLASSO_SIS_est[ID_fdr]
beta_hat_SE <- beta_DLASSO_SIS_SE[ID_fdr]
alpha_hat_est <- alpha_SIS_est[ID_fdr]
alpha_hat_SE <- alpha_SIS_SE[ID_fdr]
P.value_raw <- P_value[ID_fdr]
# Indirect effect
IDE <- beta_hat_est * alpha_hat_est # mediation(indirect) effect
# # Total effect
# if(is.null(COV)) {
# YX <- data.frame(Y = Y, X = X)
# } else {
# YX <- data.frame(Y = Y, X = X, COV)
# }
#
# gamma_est <- coef(glm(Y ~ ., family = "gaussian", data = YX))[2]
if (length(ID_fdr) > 0) {
results <- data.frame(
Index = M_ID_name_SIS[ID_fdr],
alpha_hat = alpha_hat_est,
alpha_se = alpha_hat_SE,
beta_hat = beta_hat_est,
beta_se = beta_hat_SE,
IDE = IDE,
rimp = abs(IDE) / sum(abs(IDE)) * 100,
pmax = P.value_raw, check.names = FALSE
)
if (verbose) message(paste0(" ", length(ID_fdr), " significant mediator(s) identified."))
} else {
if (verbose) message(" No significant mediator identified.")
results <- NULL
}
message("Done!", " (", format(Sys.time(), "%X"), ")")
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.