Nothing
# This is the function for our proposed method for high-dimensional Cox mediation analysis
#' High-dimensional mediation analysis for survival data
#'
#' \code{hima_survival} is used to estimate and test high-dimensional mediation effects for survival data.
#'
#' @param X a vector of exposure. Do not use \code{data.frame} or \code{matrix}.
#' @param M a \code{data.frame} or \code{matrix} of high-dimensional mediators. Rows represent samples, columns
#' represent mediator variables.
#' @param OT a vector of observed failure times.
#' @param status a vector of censoring indicator (\code{status = 1}: uncensored; \code{status = 0}: censored)
#' @param COV a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be \code{NULL}.
#' @param topN an integer specifying the number of top markers from sure independent screening.
#' Default = \code{NULL}. If \code{NULL}, \code{topN} will be \code{ceiling(n/log(n))}, where \code{n} is the sample size.
#' If the sample size is greater than topN (pre-specified or calculated), all mediators will be included in the test (i.e. low-dimensional scenario).
#' @param scale logical. Should the function scale the data? Default = \code{TRUE}.
#' @param FDRcut HDMT pointwise FDR cutoff applied to select significant mediators. Default = \code{0.05}.
#' @param verbose logical. Should the function be verbose? Default = \code{FALSE}.
#'
#' @return A data.frame containing mediation testing results of significant mediators (FDR <\code{FDRcut}).
#' \describe{
#' \item{Index: }{mediation name of selected significant mediator.}
#' \item{alpha_hat: }{coefficient estimates of exposure (X) --> mediators (M) (adjusted for covariates).}
#' \item{alpha_se: }{standard error for alpha.}
#' \item{beta_hat: }{coefficient estimates of mediators (M) --> outcome (Y) (adjusted for covariates and exposure).}
#' \item{beta_se: }{standard error for beta.}
#' \item{IDE: }{mediation (indirect) effect, i.e., alpha*beta.}
#' \item{rimp: }{relative importance of the mediator.}
#' \item{pmax: }{joint raw p-value of selected significant mediator (based on HDMT pointwise FDR method).}
#' }
#'
#' @references Zhang H, Zheng Y, Hou L, Zheng C, Liu L. Mediation Analysis for Survival Data with High-Dimensional Mediators.
#' Bioinformatics. 2021. DOI: 10.1093/bioinformatics/btab564. PMID: 34343267; PMCID: PMC8570823
#'
#' @examples
#' \dontrun{
#' # Note: In the following example, M1, M2, and M3 are true mediators.
#'
#' head(SurvivalData$PhenoData)
#'
#' hima_survival.fit <- hima_survival(
#' X = SurvivalData$PhenoData$Treatment,
#' M = SurvivalData$Mediator,
#' OT = SurvivalData$PhenoData$Time,
#' status = SurvivalData$PhenoData$Status,
#' COV = SurvivalData$PhenoData[, c("Sex", "Age")],
#' scale = FALSE, # Disabled only for simulation data
#' FDRcut = 0.05,
#' verbose = TRUE
#' )
#' hima_survival.fit
#' }
#'
#' @export
hima_survival <- function(X, M, OT, status, COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE) {
X <- matrix(X, ncol = 1)
M <- as.matrix(M)
M_ID_name <- colnames(M)
if (is.null(M_ID_name)) M_ID_name <- seq_len(ncol(M))
n <- nrow(M)
p <- ncol(M)
if (is.null(COV)) {
q <- 0
MZ <- cbind(M, X)
} else {
COV <- as.matrix(COV)
q <- dim(COV)[2]
MZ <- cbind(M, COV, X)
}
MZ <- process_var(MZ, scale)
if (scale && verbose) message("Data scaling is completed.")
#########################################################################
################################ STEP 1 #################################
#########################################################################
message("Step 1: Sure Independent Screening ...", " (", format(Sys.time(), "%X"), ")")
if (is.null(topN)) d_0 <- ceiling(n / log(n)) else d_0 <- topN # the number of top mediators that associated with exposure (X)
d_0 <- min(p, d_0) # if d_0 > p select all mediators
beta_SIS <- matrix(0, 1, p)
for (i in 1:p) {
ID_S <- c(i, (p + 1):(p + q + 1))
MZ_SIS <- MZ[, ID_S]
fit <- survival::coxph(survival::Surv(OT, status) ~ MZ_SIS)
beta_SIS[i] <- fit$coefficients[1]
}
alpha_SIS <- matrix(0, 1, p)
XZ <- cbind(X, COV)
for (i in 1:p) {
fit_a <- lsfit(XZ, M[, i], intercept = TRUE)
est_a <- matrix(coef(fit_a))[2]
alpha_SIS[i] <- est_a
}
ab_SIS <- alpha_SIS * beta_SIS
ID_SIS <- which(-abs(ab_SIS) <= sort(-abs(ab_SIS))[min(p, d_0)])
d <- length(ID_SIS)
if (verbose) message(" Top ", d, " mediators are selected: ", paste0(M_ID_name[ID_SIS], collapse = ", "))
#########################################################################
################################ STEP 2 #################################
#########################################################################
message("Step 2: De-biased Lasso estimates ...", " (", format(Sys.time(), "%X"), ")")
if (verbose) {
if (is.null(COV)) {
message(" No covariate was adjusted.")
} else {
message(" Adjusting for covariate(s): ", paste0(colnames(COV), collapse = ", "))
}
}
## estimation of beta
P_beta_SIS <- matrix(0, 1, d)
beta_DLASSO_SIS_est <- matrix(0, 1, d)
beta_DLASSO_SIS_SE <- matrix(0, 1, d)
MZ_SIS <- MZ[, c(ID_SIS, (p + 1):(p + q + 1))]
MZ_SIS_1 <- t(t(MZ_SIS[, 1]))
for (i in 1:d) {
V <- MZ_SIS
V[, 1] <- V[, i]
V[, i] <- MZ_SIS_1
LDPE_res <- LDPE_func(ID = 1, X = V, OT = OT, status = status)
beta_LDPE_est <- LDPE_res[1]
beta_LDPE_SE <- LDPE_res[2]
V1_P <- abs(beta_LDPE_est) / beta_LDPE_SE
P_beta_SIS[i] <- 2 * (1 - pnorm(V1_P, 0, 1))
beta_DLASSO_SIS_est[i] <- beta_LDPE_est
beta_DLASSO_SIS_SE[i] <- beta_LDPE_SE
}
## estimation of alpha
alpha_SIS_est <- matrix(0, 1, d)
alpha_SIS_SE <- matrix(0, 1, d)
P_alpha_SIS <- matrix(0, 1, d)
XZ <- cbind(X, COV)
for (i in 1:d) {
fit_a <- lsfit(XZ, M[, ID_SIS[i]], intercept = TRUE)
est_a <- matrix(coef(fit_a))[2]
se_a <- ls.diag(fit_a)$std.err[2]
sd_1 <- abs(est_a) / se_a
P_alpha_SIS[i] <- 2 * (1 - pnorm(sd_1, 0, 1)) ## the SIS for alpha
alpha_SIS_est[i] <- est_a
alpha_SIS_SE[i] <- se_a
}
#########################################################################
################################ STEP 3 #################################
#########################################################################
message("Step 3: Multiple-testing procedure ...", " (", format(Sys.time(), "%X"), ")")
PA <- cbind(t(P_alpha_SIS), t(P_beta_SIS))
P_value <- apply(PA, 1, max) # the joint p-values for SIS variable
## the multiple-testing procedure
N0 <- dim(PA)[1] * dim(PA)[2]
input_pvalues <- PA + matrix(runif(N0, 0, 10^{
-10
}), dim(PA)[1], 2)
nullprop <- null_estimation(input_pvalues, lambda = 0.5)
fdrcut <- HDMT::fdr_est(nullprop$alpha00,
nullprop$alpha01,
nullprop$alpha10,
nullprop$alpha1,
nullprop$alpha2,
input_pvalues,
exact = 0
)
ID_fdr <- which(fdrcut <= FDRcut)
IDE <- alpha_SIS_est[ID_fdr] * beta_DLASSO_SIS_est[ID_fdr]
if (length(ID_fdr) > 0) {
out_result <- data.frame(
Index = M_ID_name[ID_fdr],
alpha_hat = alpha_SIS_est[ID_fdr],
alpha_se = alpha_SIS_SE[ID_fdr],
beta_hat = beta_DLASSO_SIS_est[ID_fdr],
beta_se = beta_DLASSO_SIS_SE[ID_fdr],
IDE = IDE,
rimp = abs(IDE) / sum(abs(IDE)) * 100,
pmax = P_value[ID_fdr]
)
if (verbose) message(paste0(" ", length(ID_fdr), " significant mediator(s) identified."))
} else {
if (verbose) message(" No significant mediator identified.")
out_result <- NULL
}
message("Done!", " (", format(Sys.time(), "%X"), ")")
return(out_result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.