summaryRc | R Documentation |
summaryRc
is a continuous version of summary.formula
with method='response'
. It uses the plsmo
function to compute the possibly stratified lowess
nonparametric regression estimates, and plots them along with the data
density, with selected quantiles of the overall distribution (over
strata) of each x
shown as arrows on top of the graph. All the
x
variables must be numeric and continuous or nearly continuous.
summaryRc(formula, data=NULL, subset=NULL,
na.action=NULL, fun = function(x) x,
na.rm = TRUE, ylab=NULL, ylim=NULL, xlim=NULL,
nloc=NULL, datadensity=NULL,
quant = c(0.05, 0.1, 0.25, 0.5, 0.75,
0.90, 0.95), quantloc=c('top','bottom'),
cex.quant=.6, srt.quant=0,
bpplot = c('none', 'top', 'top outside', 'top inside', 'bottom'),
height.bpplot=0.08,
trim=NULL, test = FALSE, vnames = c('labels', 'names'), ...)
formula |
An R formula with additive effects. The |
data |
name or number of a data frame. Default is the current frame. |
subset |
a logical vector or integer vector of subscripts used to specify the subset of data to use in the analysis. The default is to use all observations in the data frame. |
na.action |
function for handling missing data in the input data. The default is
a function defined here called |
fun |
function for transforming |
na.rm |
|
ylab |
|
ylim |
|
xlim |
a list with elements named as the variable names appearing
on the |
nloc |
location for sample size. Specify |
datadensity |
see |
quant |
vector of quantiles to use for summarizing the marginal distribution
of each |
quantloc |
specify |
cex.quant |
character size for writing which quantiles are
represented. Set to |
srt.quant |
angle for text for quantile labels |
bpplot |
if not |
height.bpplot |
height in inches of the horizontal extended box plot |
trim |
The default is to plot from the 10th smallest to the 10th
largest |
test |
Set to |
vnames |
By default, plots are usually labeled with variable labels
(see the |
... |
arguments passed to |
no value is returned
Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com
plsmo
, stratify
,
label
, formula
, panel.bpplot
options(digits=3)
set.seed(177)
sex <- factor(sample(c("m","f"), 500, rep=TRUE))
age <- rnorm(500, 50, 5)
bp <- rnorm(500, 120, 7)
units(age) <- 'Years'; units(bp) <- 'mmHg'
label(bp) <- 'Systolic Blood Pressure'
L <- .5*(sex == 'm') + 0.1 * (age - 50)
y <- rbinom(500, 1, plogis(L))
par(mfrow=c(1,2))
summaryRc(y ~ age + bp)
# For x limits use 1st and 99th percentiles to frame extended box plots
summaryRc(y ~ age + bp, bpplot='top', datadensity=FALSE, trim=.01)
summaryRc(y ~ age + bp + stratify(sex),
label.curves=list(keys='lines'), nloc=list(x=.1, y=.05))
y2 <- rbinom(500, 1, plogis(L + .5))
Y <- cbind(y, y2)
summaryRc(Y ~ age + bp + stratify(sex),
label.curves=list(keys='lines'), nloc=list(x=.1, y=.05))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.