Nothing

```
# Calculate common W using all H and all data
W.fcnnls <- function (x=x, y=y, weight = wt, verbose = FALSE, pseudo = FALSE, eps = 0)
{
# W.fcnnls : Function to calculate common W using Nonnegative Least Square method
# This function was obtained from NMF package (Gaujoux R., BMC Bioinformatics 2010,11:367) at
# https://github.com/renozao/NMF/blob/master/R/algorithms-snmf.R
# and was modified for using multiple data sets.
# The original matlab code was proposed by M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450
# Given A and C this algorithm solves for the optimal
# K in a least squares sense, using that
# A = C*K
# in the problem
# min ||A-C*K||, s.t. K>=0, for given A and C.
# @param C the matrix of coefficients
# @param A the target matrix of observations
# @return [K, Pset]
# The modified function calculates common W using estimated Hi's
# x = list(H), y = list(dat)
#--------------------------------------------------------------------------------
wt=NULL
for (i in 1:length(x)){
if (any(dim(y[[i]]) == 0L)) {
stop("Empty target matrix 'y' [", paste(dim(y), collapse = " x "),
"]")}
if (any(dim(x[[i]]) == 0L)) {
stop("Empty regression variable matrix 'x' [", paste(dim(x),
collapse = " x "), "]")}
}
#C <- x # Original
#A <- y # Original
C <- t(x[[1]]) # Or you can put C = t(x[[2]]) and A = t(y[[2]])
A <- t(y[[1]])
nObs = nrow(C)
lVar = ncol(C)
if (nrow(A) != nObs)
stop("C and A have imcompatible sizes")
pRHS = ncol(A)
W = matrix(0, lVar, pRHS)
iter = 0
maxiter = 3 * lVar
#CtC = crossprod(C) # Original
#CtA = crossprod(C, A) # Original
CtC <- 0
for (i in 1:length(x)) CtC <- CtC + sqrt(weight[i])*t(x[[i]]%*%t(x[[i]])) # Adjusted in order to compute common W
CtA <- 0
for (i in 1:length(x)) CtA <- CtA + sqrt(weight[i])*t(y[[i]]%*%t(x[[i]])) # Adjusted in order to compute common W
#K = .cssls(CtC, CtA, pseudo = pseudo) # Original
K = adj.cssls(CtC, CtA)
Pset = K > 0
K[!Pset] = 0
D = K
Fset = which(colSums(Pset) != lVar)
oitr = 0
while (length(Fset) > 0) {
oitr = oitr + 1
if (verbose && oitr > 5)
cat(sprintf("%d ", oitr))
K[, Fset] = adj.cssls(CtC, CtA[, Fset, drop = FALSE], Pset[,
# Fset, drop = FALSE], pseudo = pseudo) # Original
Fset, drop = FALSE])
Hset = Fset[colSums(K[, Fset, drop = FALSE] < eps) >
0]
if (length(Hset) > 0) {
nHset = length(Hset)
alpha = matrix(0, lVar, nHset)
while (nHset > 0 && (iter < maxiter)) {
iter = iter + 1
alpha[, 1:nHset] = Inf
ij = which(Pset[, Hset, drop = FALSE] & (K[,
Hset, drop = FALSE] < eps), arr.ind = TRUE)
i = ij[, 1]
j = ij[, 2]
if (length(i) == 0)
break
hIdx = (j - 1) * lVar + i
negIdx = (Hset[j] - 1) * lVar + i
alpha[hIdx] = D[negIdx]/(D[negIdx] - K[negIdx])
alpha.inf <- alpha[, 1:nHset, drop = FALSE]
minIdx = max.col(-t(alpha.inf))
alphaMin = alpha.inf[minIdx + (0:(nHset - 1) *
lVar)]
alpha[, 1:nHset] = matrix(alphaMin, lVar, nHset,
byrow = TRUE)
D[, Hset] = D[, Hset, drop = FALSE] - alpha[,
1:nHset, drop = FALSE] * (D[, Hset, drop = FALSE] -
K[, Hset, drop = FALSE])
idx2zero = (Hset - 1) * lVar + minIdx
D[idx2zero] = 0
Pset[idx2zero] = FALSE
K[, Hset] = adj.cssls(CtC, CtA[, Hset, drop = FALSE],
# Pset[, Hset, drop = FALSE], pseudo = pseudo) # Original
Pset[, Hset, drop = FALSE])
Hset = which(colSums(K < eps) > 0)
nHset = length(Hset)
}
}
W[, Fset] = CtA[, Fset, drop = FALSE] - CtC %*% K[, Fset,
drop = FALSE]
Jset = which(colSums((ifelse(!(Pset[, Fset, drop = FALSE]),
1, 0) * W[, Fset, drop = FALSE]) > eps) == 0)
Fset = setdiff(Fset, Fset[Jset])
if (length(Fset) > 0) {
mxidx = max.col(t(ifelse(!Pset[, Fset, drop = FALSE],
1, 0) * W[, Fset, drop = FALSE]))
Pset[(Fset - 1) * lVar + mxidx] = TRUE
D[, Fset] = K[, Fset, drop = FALSE]
}
}
list(coef = K, Pset = Pset)
}
```

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.