continuous.test | R Documentation |
Summarization of the continuous information.
continuous.test (name, x, y, digits = 3, scientific = FALSE, range = c("IQR","95%CI"), logchange = FALSE, pos=2, method=c("non-parametric","parametric"), total.column=FALSE, ...)
name |
the name of the feature. |
x |
the information to summarize. |
y |
the classification of the cohort. |
digits |
how many significant digits are to be used. |
scientific |
either a logical specifying whether result should be encoded in scientific format. |
range |
the range to be visualized. |
logchange |
either a logical specifying whether log2 of fold change should be visualized. |
pos |
a value indicating the position of range to be visualized. 1 for column, 2 for row. |
method |
a character string indicating which test method is to be computed. "non-parametric" (default), or "parametric". |
total.column |
option to visualize the total (by default = " |
... |
further arguments to be passed to or from methods. |
The function returns a table with the summarized information and the relative p-value. For non-parametric method, if the number of group is equal to two, the p-value is computed using the Wilcoxon rank-sum test, Kruskal-Wallis test otherwise. For parametric method, if the number of group is equal to two, the p-value is computed using the Student's t-Test, ANOVA one-way otherwise.
Stefano Cacciatore
Cacciatore S, Luchinat C, Tenori L
Knowledge discovery by accuracy maximization.
Proc Natl Acad Sci U S A 2014;111(14):5117-22. doi: 10.1073/pnas.1220873111. Link
Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA
KODAMA: an updated R package for knowledge discovery and data mining.
Bioinformatics 2017;33(4):621-623. doi: 10.1093/bioinformatics/btw705. Link
correlation.test
, categorical.test
, txtsummary
data(clinical) hosp=clinical[,"Hospital"] gender=clinical[,"Gender"] GS=clinical[,"Gleason score"] BMI=clinical[,"BMI"] age=clinical[,"Age"] A=categorical.test("Gender",gender,hosp) B=categorical.test("Gleason score",GS,hosp) C=continuous.test("BMI",BMI,hosp,digits=2) D=continuous.test("Age",age,hosp,digits=1) rbind(A,B,C,D)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.